MATH1853 Linear Algebra, Probability & Statistics Lecture Notes

Jacob Shing

October 21, 2025

Important: This course has two parts: (1) Linear Algebra; and (2) Probability & Statistics. These notes only cover the second part.

1 Complex Variables

Definition 1.1 (Complex Number). The set of **complex numbers** is defined as

$$\mathbb{C} = \{ a + b\mathbf{i} \mid a, b \in \mathbb{R}, \mathbf{i}^2 = -1 \}$$

Further, for $z=a+b{\rm i}\in\mathbb{C}$, we refer to a as the **real part** of z, denoted ${\rm Re}(z)$, and b as the **imaginary part** of z, denoted ${\rm Im}(z)$.

Definition 1.2 (Complex Operations). \mathbb{C} is a field under the certain operations. For z = a + bi, $w = c + di \in \mathbb{C}$, we define:

Name	Notation	Definition
Addition	z + w	(a+c) + (b+d)i
Subtraction	z-w	(a-c) + (b-d)i
Multiplication	zw	(ac - bd) + (ad + bc)i
Division	$\frac{z}{w}, (w \neq 0)$	$\frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$
Conjugate	\overline{z}	a-bi
Modulus	z	$\sqrt{a^2+b^2}$

Table 1: Operations on Complex Numbers

Theorem 1.3 (Triangle Inequality). For any $z, w \in \mathbb{C}$, we have

$$|z + w| \le |z| + |w|$$

Proof.

The proof is as follows:

$$|z+w|^2 = (z+w)\overline{(z+w)}$$

$$= z\overline{z} + w\overline{w} + z\overline{w} + \overline{z}w$$

$$= |z|^2 + |w|^2 + z\overline{w} + \overline{z}\overline{w}$$

$$= |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w}) \qquad (\text{by } \operatorname{Re}(z) = \frac{z+\overline{z}}{2})$$

$$\leq |z|^2 + |w|^2 + 2|z\overline{w}| \qquad (\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2} \geq \operatorname{Re}(z))$$

$$= |z|^2 + |w|^2 + 2|z||w|$$

$$= (|z| + |w|)^2$$

Q.E.D.

Theorem 1.4 (Properties of Conjugates and Moduli). For any $z, w \in \mathbb{C}$, we have

1. properties of conjugates:

(a)
$$\overline{(z+w)} = \overline{z} + \overline{w}$$

(b)
$$\overline{(zw)} = \overline{zw}$$

(c)
$$\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}, (w \neq 0)$$

(d)
$$\overline{(\overline{z})} = z$$
 (involution)

2. properties of moduli:

(a)
$$|z| \ge 0$$
, and $|z| = 0$ if and only if $z = 0$

(b)
$$|zw| = |z||w|$$

(c)
$$\left| \frac{z}{w} \right| = \frac{|z|}{|w|}, (w \neq 0)$$

(d)
$$|z|^n = |z^n|$$

Definition 1.5 (Polar Form of a Complex Number). For any $z = a + bi \in \mathbb{C}$, we can express z in **polar form** as

$$z = r(\cos\theta + i\sin\theta)$$

where $r = |z| = \sqrt{a^2 + b^2}$ is the **modulus** of z, and $\theta = \arg(z) = \arctan \frac{b}{a}$ is the **argument** of z.

Remark. In MATH1853, we limit θ to be the principal argument, i.e., $\arg(z) \in [0, 2\pi)$ or $(-\pi, \pi]$.

Definition 1.6 (Multiplication of Complex Numbers in Polar Form). Let $z_1, z_2 \in \mathbb{C}$, where $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$. Then, the multiplication of z_1 and z_2 is given by

$$z_1 z_2 = r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$$

Theorem 1.7 (De Moivre's Theorem). If $z = r(\cos \theta + i \sin \theta) \in \mathbb{C}$, $n \in \mathbb{Z}$, r > 0, then

$$z^n = r^n \left[\cos(n\theta) + i \sin(n\theta) \right]$$

Theorem 1.8 (Euler's Formula). The formula states:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Corollary 1.9. The trigonometric functions can be expressed in terms of exponentials as follows:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Definition 1.10 (Exponential Form of a Complex Number). For any $z = a + bi \in \mathbb{C}$, z has the **exponential form**:

$$z = re^{\mathrm{i}\theta}$$

where $r = |z| = \sqrt{a^2 + b^2}$ and $\theta = \arg(z) = \arctan \frac{b}{a}$.

Theorem 1.11 (Properties of the Exponential Form). For any $z, w \in \mathbb{C}$, we have the following properties:

Property	Rule
Product	$e^z e^w = e^{z+w}$
Quotient	$\frac{e^z}{e^w} = e^{z-w}$
Power	$(e^z)^n = e^{nz}$
De Moivre's	$(re^{\mathrm{i}\theta})^n = r^n e^{\mathrm{i}n\theta}$
Conjugage	$\overline{e^z} = e^{\overline{z}}$
Modulus	$ e^z = e^{\operatorname{Re}(z)}$
Argument	$arg(e^z) = Im(z)$