
COMP2121 Discrete Mathematics
Revision Notes

Jacob Shing

1 Sept 2025

Contents

1 Logic & Proofs 2
1.1 Propositional Logic . 2

1.1.1 Boolean Algebra . 2
1.1.2 Logical Equivalence . 3

1.2 Predicate Logic . 3
1.3 Proofs . 4

1.3.1 Direct Proof . 5
1.3.2 Proof by Contraposition . 5
1.3.3 Proof by Contradiction . 5
1.3.4 Proof by Cases . 5
1.3.5 Equivalence Proof . 5

2 Sets, Relations, & Functions 5
2.1 Sets . 6

2.1.1 Basics on Sets . 6
2.1.2 Relationships of Sets . 6
2.1.3 Set Operations . 6
2.1.4 Set Theory & Logic . 7

2.2 Relations . 7
2.2.1 Definition & Properties of Relations . 7
2.2.2 Equivalence Classes & Partitions . 8

2.3 Functions . 8
2.3.1 Definition & Terminology . 8
2.3.2 Types of Functions . 9
2.3.3 Operations on Functions . 9
2.3.4 Real-valued Functions . 9
2.3.5 Growth of Functions . 9

3 Counting & Probability 10
3.1 Fundamentals of Counting . 10
3.2 Permutations and Combinations . 11

3.2.1 Permutations and Combinations with Repetitions . 12
3.3 Pigeonhole Principle . 12
3.4 Fundamental Probability . 12

4 Graphs 13

1

1 Logic & Proofs
1.1 Propositional Logic

Definition 1.1 (Proposition). A statement that can be unambiguously determined to be either true of false.

Definition 1.2 (Logical Operators). The commonly used logical operators are:
• Negation: ¬P

• Conjunction (AND): P ∧ Q

• Disjunction (OR): P ∨ Q

• Exclusive OR (XOR): P ⊕ Q

• Implication/Conditional (if ..., then ...): P → Q

• Biconditional (if and only if): P ↔ Q

where P and Q are propositions.

Remark. The truth tables for the conditional and biconditional operators are as follows:

P Q P → Q P ↔ Q
F F T T
F T T F
T F F F
T T T T

Note that the “implication” operator is distinct from the “implication” used in natural language. P → Q does not
contain cause-and-effect information.

Definition 1.3 (Sufficiency and Necessity). When P → Q is true, we say that:
• P is a sufficient condition for Q.
• Q is a necessary condition for P .

Remark (Common Natural Language Phrases Involving Implication). It is useful to note that the following phrases are
logically equivalent to P → Q:

• “If P , then Q”
• “P only if Q”
• “Q if P”
• “Q whenever P”

• “P implies Q”
• “P is sufficient for Q”
• “Q is necessary for P”
• “Q follows from P”

• “Q provided that P”
• “Q unless ¬P”

1.1.1 Boolean Algebra

The truth value of a proposition P is denoted by w(P). For composite propositions, we often need to simplify the
expression.

Definition 1.4 (Algebraic Rules for Boolean Algebra). Consider two propositions P and Q, and denote true by 1 and
false by 0, we have:

1. w(¬P) = w(P) ⊕ 1
2. w(P ∧ Q) = w(P)w(Q)
3. w(P ⊕ Q) = w(P) ⊕ w(Q)

4. w(P ∨ Q) = w(P) ⊕ w(Q) ⊕ w(P)w(Q)
5. w(P ↔ Q) = w(P) ⊕ w(Q) ⊕ 1
6. w(P → Q) = w(P)w(Q) ⊕ w(P) ⊕ 1

Example. Question: Compute the truth values of (P → Q) ∧ (Q → P) as a function of w(P) and w(Q).

2

Solution: Denote x = w(P) and y = w(Q), we have:
w((P → Q) ∧ (Q → P))

= (xy ⊕ x ⊕ 1) ∧ (yx ⊕ y ⊕ 1) (Rule #6)
= (xy ⊕ x ⊕ 1)(xy ⊕ y ⊕ 1) (Rule #2)
= x2y2 ⊕ xy2 ⊕ xy ⊕ x2y ⊕ xy ⊕ x ⊕ xy ⊕ y ⊕ 1
= xy ⊕ xy ⊕ xy ⊕ xy ⊕ xy ⊕ x ⊕ xy ⊕ y ⊕ 1 (∀b ∈ {0, 1} : (b2 = b))
= x ⊕ y ⊕ 1

Note that this expression is equivalent to P ↔ Q (by Rule #5).

1.1.2 Logical Equivalence

Definition 1.5 (Tautology and Contradiction). A tautology is a proposition that is always true, denoted by T . A
contradiction is a proposition that is always false, denoted by F .

Definition 1.6 (Logical Equivalence). Two propositions P and Q are said to be logically equivalent if P ↔ Q is a
tautology, denoted as P ≡ Q or P ⇔ Q.

Theorem 1.7 (Important Laws of Logical Equivalence). These are some important laws for simplifying composite logics:
1. Double Negation Law: ¬(¬P) ≡ Q

2. Identity Laws: P ∧ T ≡ P and P ∨ F ≡ P

3. Domination Laws: P ∨ T ≡ T and P ∧ F ≡ F

4. Idempotent Laws: P ∧ P ≡ P and P ∨ P ≡ P

5. Negation Laws: P ∧ ¬P ≡ F and P ∨ ¬P ≡ T

6. Biconditional Law: (P ↔ Q) ≡ (P → Q) ∧ (Q → P)
7. Implication Law: (P → Q) ≡ (¬P ∨ Q)
8. Contraposition Law: (P → Q) ≡ (¬Q → ¬P)
9. De Morgan’s Laws:

(a) ¬(P ∧ Q ∧ R ∧ · · ·) ≡ ¬P ∨ ¬Q ∨ ¬R ∨ · · ·
(b) ¬(P ∨ Q ∨ R ∨ · · ·) ≡ ¬P ∧ ¬Q ∧ ¬R ∧ · · ·

10. Distributivity Laws:
(a) P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)
(b) P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)

11. Absorption Laws:
(a) P ∨ (P ∧ Q) ≡ P

(b) P ∧ (P ∨ Q) ≡ P

Remark. Other important logical equivalences involving Biconditional and Exclusive Or

1. Biconditional:
(a) P ↔ Q ≡ ¬P ↔ ¬Q

(b) P ↔ Q ≡ (P ∧ Q) ∨ (¬P ∧ ¬Q)
(c) ¬(P ↔ Q) ≡ P ↔ ¬Q

2. Exclusive Or:
(a) P ⊕ Q ≡ (P ∨ Q) ∧ ¬(P ∧ Q)
(b) P ↔ Q ≡ ¬P ⊕ Q ≡ P ⊕ ¬Q

(c) P ∨ Q ≡ (P ∧ Q) ⊕ (P ⊕ Q)
(d) P ⊕ T ≡ ¬P and P ⊕ F ≡ P

1.2 Predicate Logic

Definition 1.8 (Universe of Discourse). For a variable x, the set of values under consideration is called the Universe
of Discourse, or the Domain.

Definition 1.9 (Predicate). A predicate P (x) is a statement that depends on a variable x so that P (x) is a proposition
for every x in the universe of discourse.

Definition 1.10 (The Universal Quantifier and The Existential Quantifier). The notation ∀xP (x) denotes “P (x) holds
for every x in the universe of discourse”. Consider its logical equivalence:–

∀xP (x) ≡ P (x0) ∧ P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)

3

where {x0, x1, x2, · · · , xn} is the universe of discourse.
Similarly, the notation ∃xP (x) denotes “P (x) holds for at least one x in the universe of discourse”, and has the
logical equivalence of:–

∃xP (x) ≡ P (x0) ∨ P (x1) ∨ P (x2) ∨ · · · ∨ P (xn)
.

Theorem 1.11 (Examples and Counterexamples). To guarantee that the proposition ∀xP (x) is false, it is enough to
find one counterexample x0 such that P (x0) is false. To guarantee that the proposition ∃xP (x) is true, it is enough
to find one example x0 such that P (x0) is true.

Theorem 1.12 (Negations of ∀ and ∃ Predicates). Predicates involving ∀ and ∃ can be negated as:

1. ¬(∀xP (x)) ≡ ∃x¬P (x) 2. ¬(∃xP (x)) ≡ ∀x¬P (x)

Remark. Quantifiers cannot be exchanged:
∀y[∃x : P (x, y)] ̸≡ ∃x[∀y : P (x, y)]

Let P (x, y) be “x opens y”, x ∈ {all keys in the world}, and y ∈ {all doors in the world}. The left hand side means
“for every door, there exists at least one key that opens the door” while the right hand side means “there exists at
least one key that opens every door.”

Remark. Quantifiers are only distributive with respect to certain operators:
∀x[P (x) ∧ Q(x)] ≡ [∀xP (x)] ∧ [∀yQ(y)]
∃x[P (x) ∨ Q(x)] ≡ [∃xP (x)] ∨ [∃yQ(y)]

Other combinations do not work.

1.3 Proofs

Definition 1.13 (Valid Argument). An argument is said to be valid if it is impossible for the conclusion to be F when
all its premises are T .

Definition 1.14 (Logical Implication). P is said to be logically implying Q if P → Q is a tautology, denoted as P ⇒ Q.

Definition 1.15 (Open Problems). When the proof of a statement remains unknown, the statement is called an open
problem. Once a proof is found, the problem no longer remains open.

Theorem 1.16 (Rules of Inference in Propositional Logic).

Name Logical Implication
Modus ponens ((P → Q) ∧ P) ⇒ Q
Modus tollens ((P → Q) ∧ ¬Q) ⇒ ¬P
Hypothetical syllogism ((P → Q) ∧ (Q → R)) ⇒ (P → R)
Disjunctive syllogism ((P ∨ Q) ∧ ¬P) ⇒ Q
Addition P ⇒ (P ∨ Q)
Simplification (P ∧ Q) ⇒ P
Resolution ((P ∨ Q) ∧ (¬P ∨ R) ⇒ (Q ∨ R))

Theorem 1.17 (Rules of Inference in Predicate Logic).

Name Logical Implication
Universal instantiation (∀xP (x)) ⇒ P (c) for any arbitrary c
Universal generalization P (c) ⇒ (∀xP (x)) for any arbitrary c
Existential instantiation (∃xP (x)) ⇒ P (c) for some c
Existential generalization P (c) ⇒ (∃xP (x)) for some c

Theorem 1.18 (Combining Rules of Inference).

Name Logical Implication
Universal modus ponens ((∀x(P (x) → Q(x))) ∧ P (a)) ⇒ Q(a) for a particular a
Universal modus tollens ((∀x(P (x) → Q(x))) ∧ ¬Q(a)) ⇒ ¬P (a) for a particular a

4

Several methods for proving statements are introduced below.

1.3.1 Direct Proof

A direct proof of a statement P → Q starts with the assumption that P is true, and uses a sequence of logical
implications to arrive at the conclusion that Q is true.

Example.
Thesis: If n is an odd integer, then n2 is an odd integer.

Proof.
Assume n to be an odd integer, then, by definition, for some integer k, n = 2k + 1.
Then, we have n2 = (2k + 1)2 = 2(2k2 + 1) + 1. Since k is an integer, 2k2 + 1 is an integer.
By definition of an odd number, n2 = 2(2k2 + 1) + 1 is an odd integer.

Q.E.D.

1.3.2 Proof by Contraposition

Recall the Contraposition Law: P → Q ≡ ¬Q → ¬P . To prove P → Q by contraposition, we first assume that the
conclusion, namely Q, is false, and then show that the premise P must also be false.

Example.
Thesis: For every integer n, n is even if n2 is even.

Proof.
Denote P : “n2 is even” and Q : “n is even”. The thesis is equivalent to P → Q. To prove by contraposition, we
prove ¬Q → ¬P , i.e., “If n is odd, then n2 is odd”.
Note that this is exactly the same as the previous example, which has already been proven true.
Therefore, when Q is false (i.e., n is odd), P must also be false (i.e., n2 is odd), and this shows that P ⇒ Q.

Q.E.D.

1.3.3 Proof by Contradiction

Suppose we would like to prove P is true, and we can find a contradiction F , such that ¬P ⇒ F . Because ¬P → F
is true, but the consequence is F , for the conditional to be true, the premise ¬P must be false, i.e., P must be true.

Example.
Thesis: ∃x ∈ R(x2 + 1 = 0) is false.

Proof.
We start by assuming the negation of the thesis, namely ∃x ∈ R(x2 + 1 = 0) is true.
Consider the fact that ∀x0 ∈ R(x2

0 ≥ 0), which also implies x2
0 + 1 ≥ 1.

Combined with the assumption, we have x2
0 + 1 = 0 ≥ 1, which is a contradition.

Therefore, the negation of the thesis is false, and the thesis must be true.
Q.E.D.

1.3.4 Proof by Cases

Consider the logical equivalence:
(P1 ∨ P2 ∨ · · · ∨ Pn) → Q ≡ (P1 → Q) ∧ (P2 → Q) ∧ · · · ∧ (Pn → Q)

To prove P → Q, where P ≡ P1 ∨ P2 ∨ · · · ∨ Pn, we can prove Pi → Q for each i = 1, 2, . . . , n.

1.3.5 Equivalence Proof

To prove P ≡ Q, we can prove both the sufficiency P → Q and the necessity Q → P .

2 Sets, Relations, & Functions
Remark. The logical expressions given in this section are very important for proofs in assignments and exams.

5

2.1 Sets
2.1.1 Basics on Sets

Definition 2.1 (Set). A set is a collection of unordered, distinct objects, considered as an object in its own right. The
objects are called the elements or members of the set.

Definition 2.2 (Belonging to a Set). An object x within A is said to belong to a set A, denoted by x ∈ A. If x does
not belong to A, we write x /∈ A.

Definition 2.3 (Cardinality). The cardinality of a set A, denoted by |A|, is the number of elements in A.

Definition 2.4 (Empty Set). The empty set, denoted by ∅, is the set with no elements. Its cardinality is 0, i.e.
|∅| = 0.

Remark. Sets can be defined in two ways:
1. Roster form: Explicitly list all elements of the set. (e.g. A = {1, 2, 3})
2. Set-builder form: Describe the properties of the elements of the set.

(e.g. A = {x | x is a positive integer less than 4} = {1, 2, 3})

Definition 2.5 (Power Set). A power set of a set A, denoted by P(A), is the set of all subsets of A, i.e. all the possible
combinations of elements in A.
Note that ∅ ∈ P(A) and A ∈ P(A) are tautologies. We also have |P(A)| = 2|A|, provided that A is finite.

Remark. Common sets: (1) Natural numbers: N = {0, 1, 2, . . .} in the field of Computer Science, 0 ∈ N, while in
some other fields, 0 /∈ N; (2) Integers: Z, Positive integers: Z+; (3) Rational numbers: Q = { a

b | a, b ∈ Z, b ̸= 0};
(4) Real numbers: R; (5) Complex numbers: C = {a + bi | a, b ∈ R, i2 = −1}.

2.1.2 Relationships of Sets

Definition 2.6 (Subset). A set A is a subset of a set B, denoted by A ⊆ B, if every element of A is also an element
of B, or, by logical expression,

A ⊆ B ≡ ∀x(x ∈ A → x ∈ B)
Conversely, if ∃x(x ∈ A ∧ x /∈ B), then A is not a subset of B, denoted by A ⊈ B.

Definition 2.7 (Proper Subset). A set A is a proper subset of a set B, denoted by A ⊂ B, if A ⊆ B and A ̸= B, or,
by logical expression,

A ⊂ B ≡ [∀x(x ∈ A → x ∈ B)] ∧ [∃y(y ∈ B ∧ ¬(y ∈ A))]

Definition 2.8 (Equality of Sets). Two sets A and B are equal, denoted by A = B, if for every element x in A, x is
also in B, and vice versa, or, by logical expression

A = B ≡ ∀x(x ∈ A ↔ x ∈ B)

2.1.3 Set Operations

Definition 2.9 (Intersection ∩). The intersection of two sets A and B, denoted by A ∩ B, is the set of elements that
are in both A and B, or, by logical expression,

x ∈ A ∩ B ≡ (x ∈ A) ∧ (x ∈ B)

Definition 2.10 (Union ∪). The union of two sets A and B, denoted by A ∪ B, is the set of elements that are in either
A or B (or in both), or, by logical expression,

x ∈ A ∪ B ≡ (x ∈ A) ∨ (x ∈ B)

Definition 2.11 (Difference −). The difference of two sets A and B, denoted by A − B, is the set of elements that are
in A but not in B, or, by logical expression,

x ∈ A − B ≡ (x ∈ A) ∧ (x /∈ B)

6

Definition 2.12 (Complement S). The complement of a set A in the universal set U , denoted by A, is the set of
elements that are not in A, or, by logical expression,

x ∈ A ≡ x /∈ A

Note that we have A = U − A.

Definition 2.13 (Cartesian Product ×). The Cartesian product of two sets A and B, denoted by A × B, is the set of
all ordered pairs (a, b) where a ∈ A and b ∈ B.

Remark. Note that A × B ̸= B × A for non-empty sets A and B. Generally, we have A × ∅ = ∅ × A = ∅.

2.1.4 Set Theory & Logic

Sets are in one-to-one correspondence with predicates.

Theorem 2.14 (Sets and Predicates). Let U be the set of all possible values of x, then this universal set is equivalent
to the universe of discourse for predicate logics.
For every set A ⊆ U , we can define a predicate that depends on A:

PA(x) : (x ∈ A)
Similarly, for every predicate P (x), we can define a truth set A:

A := {x ∈ U | P (x)}

2.2 Relations
2.2.1 Definition & Properties of Relations

Definition 2.15 (Relation). A relation from a set A to a set B is a subset of A × B, denoted by R ⊆ A × B.
When element a is in relation with element b by R, we write aRb, i.e.,

a R b ≡ (a, b) ∈ R

Otherwise, we write a ̸R b.

There are several special types of relations when we discuss relations on a set A itself, i.e. R ⊆ A × A.

Definition 2.16 (Reflexive Relation). A reflexive relation is defined to be:
∀x ∈ A(x R x)

Example. Let A be the set of all people and define x R y : “x has a biological father y”. Since everyone must be
born from a biological father (regardless of whether they know who he is, or whether the father is still alive), we have
∀x ∈ A(x R x). Thus, this relation is reflexive.

Definition 2.17 (Symmetric Relation). A symmetric relation is defined to be:
∀x, y ∈ A(x R y → y R x)

Example. Continue to let A be the set of all people and redefine x R y : “x is married to y”. Since if x is married to
y, then y must be married to x, we have ∀x, y ∈ A(x R y → y R x). Thus, this relation is symmetric.

Remark. It does not matter if ∃x0, y0 ∈ A who are single and not married to anyone, since when (x0, y0) /∈ R, the
implication (x0 R y0) → (y0 R x0) is still true.

Definition 2.18 (Transitive Relation). A transitive relation is defined to be:
∀x, y, z ∈ A[(x R y) ∧ (y R z) → (x R z)]

Example. Let A be the set of all people in Hong Kong, and define x R y : “x studies in the same university as y”.
Since if x studies in the same university as y, and y studies in the same university as z, then x must study in the
same university as z, we have ∀x, y, z ∈ A[(x R y) ∧ (y R z) → (x R z)]. Thus, this relation is transitive.

Remark. It does not matter if ∃x, y0, z ∈ A, where y0 studies in a different university from x and z, since when
(x R y0) ∧ (y0 R z) is false, the implication [(x R y0) ∧ (y0 R z)] → (x R z) is still true.

7

Definition 2.19 (Equivalence Relation). An equivalence relation is a relation that is reflexive, symmetric, and transi-
tive.

2.2.2 Equivalence Classes & Partitions

Lemma 2.20 (Equivalence of Elements). Let R be an equivalence relation on a set A. Two elements x, y ∈ A are said
to be equivalent if x R y.

Definition 2.21 (Equivalence Class). The equivalence class of an element x ∈ A is the set of all elements in A that
are equivalent to x, denoted by [x], or, more formally,

[x] := {y ∈ A | x R y}
Every element of [x] is said to be a representative of the equivalence class [x].

Example. Let A = Z+, and define x R y : “x − y is even”. Observe that any integer subtracted by itself is 0, which
is even, so the relation is reflexive. Also, when x − y is even, then y − x = −(x − y) is also even, so the relation is
symmetric. Finally, when x − y and y − z are both even, then x − z = (x − y) + (y − z) is also even, so the relation
is transitive. Thus, this relation is an equivalence relation.
Easily, we have [1] = {1, 3, 5, 7, . . .} and [2] = {2, 4, 6, 8, . . .}.

Lemma 2.22 (Disjoint Sets). Two sets A1 and A2 are said to be disjoint if A1 ∩ A2 = ∅, i.e. they have no elements
in common.

Theorem 2.23 (Distinct Equivalence Classes are Disjoint). If [x] ∪ [y] ̸= ∅, then [x] = [y].

Definition 2.24 (Partition of a Set). A list of subsets A1, A2, . . . , Ak ⊆ A forms a partition of A if the following
conditions are satisfied:

1.
k⋃

i=1
Ai = A

2. ∀i ̸= j : Ai ∩ Aj = ∅

Example. Let A be the set of all people, and define x R y : “x and y are born in the same month”. We skip the
verification that this is an equivalence relation.
The equivalence classes are: [People born in Jan], [People born in Feb], . . . , [People born in Dec].
Observe that the union of all these equivalence classes must be A, since everyone must be born in some month, and
any two equivalence classes are disjoint, since no one can be born in two different months. Thus, these equivalence
classes form a partition of A.

2.3 Functions
2.3.1 Definition & Terminology

Definition 2.25 (Function). A function is a special type of relation from a set A to a set B with the property that for
every a ∈ A, there is exactly one b ∈ B such that a is related to b.
Explicitly, a relation R from A to B is a function if it satisfies:

1. ∀a ∈ A, ∃b ∈ B : a R b

2. ∀a ∈ A, ∀b1, b2 ∈ B : (a R b1) ∧ (a R b2) → (b1 = b2)
Notation: For a relation R that is a function, we write y = f(x).
Complete Notation of a Function: To completely define a function, we write it in the form:

f : A → B f(x) = (the rule to get y from x)

Definition 2.26 (Domain, Codomain, Preimage & Image). For a function y = f(x), or R : A → B, we have:
1. The set A is called the domain of f ;
2. The elements x ∈ A are called the preimages;
3. The set B is called the codomain of f ;
4. The elements y ∈ B are called the images;

8

Definition 2.27 (Range). The range of a function f : A → B is the set of all elements in B that are images of elements
in A, i.e.

f(A) := {y ∈ B | ∃x ∈ A(y = f(x))}
Note that we have the property f(A) ⊆ B, i.e. the range of f is not necessarily the same as the codomain of f .

2.3.2 Types of Functions

Definition 2.28 (Injective Function). A function f : A → B is said to be injective (one-to-one) if
∀x1, x2 ∈ A[(x1 ̸= x2) → (f(x1) ̸= f(x2))]

Example. f : R → R f(x) = x2 is not injective, since f(1) = f(−1) = 1, while f : R+ → R f(x) = x2 is injective.

Definition 2.29 (Surjective Function). A function f : A → B is said to be surjective (onto) if
∀y ∈ B, ∃x ∈ A : f(x) = y

Consequently, we have f(A) = B for any surjective f : A → B.

Definition 2.30 (Bijective Function). A function f : A → B is said to be bijective if it is both injective and surjective.
In other words, for every y ∈ B, there exists a unique x ∈ A such that f(x) = y.

2.3.3 Operations on Functions

Definition 2.31 (Composition of Functions). Given two functions f : A → B and g : B → C, we can define g◦f : A → C
by

(g ◦ f)(x) := g(f(x))

Definition 2.32 (Inverse of a Function). Let f : A → B be a bijective function. Then there exists a function g : B → A
such that

∀x ∈ A (g ◦ f)(x) = x
and

∀y ∈ B (f ◦ g)(y) = y
This function g is called the inverse of f , denoted by f−1.

2.3.4 Real-valued Functions

Definition 2.33 (Real-valued Function). A function f : A → B is said to be a real-valued function if B ⊆ R.

Theorem 2.34. Let A, B ⊆ R, we say f : A → B to be:
1. strictly increasing if ∀x1, x2 ∈ A[(x1 < x2) → (f(x1) < f(x2))];
2. strictly decreasing if ∀x1, x2 ∈ A[(x1 < x2) → (f(x1) > f(x2))];
3. non-increasing if ∀x1, x2 ∈ A[(x1 < x2) → (f(x1) ≥ f(x2))];
4. non-decreasing if ∀x1, x2 ∈ A[(x1 < x2) → (f(x1) ≤ f(x2))].

Remark. Note that “not non-decreasing” does not imply “decreasing”. For example, f : R → R f(x) = x2 is not
non-decreasing, but it is not decreasing either.

2.3.5 Growth of Functions

Definition 2.35 (Big-O Notation). Let g : N → R+ be a function. The set O(g) is defined as
O(g) := {f : N → R+ | ∃c > 0, ∃n0 ∈ N, ∀n ≥ n0(f(n) ≤ cg(n))}

That is, a set of functions, that for some scalar c and some threshold n0, f(n) is eventually upper-bounded by cg(n).
O(g) contains all the functions that grow slower than g, and for f ∈ O(g), we say that g is the asymptotic upper
bound of f .

Remark. Often, we write f(n) = O(g(n)) instead of f ∈ O(g) and f1(n) = f2(n) + O(g(n)) instead of f1(n) =
f2(n) + h(n) for some h ∈ O(g).

9

Definition 2.36 (Big-Ω Notation). Let g : N → R+ be a function. The set Ω(g) is defined as
Ω(g) := {f : N → R+ | ∃c > 0, ∃n0 ∈ N, ∀n ≥ n0(f(n) ≥ cg(n))}

That is, a set of functions, that for some scalar c and some threshold n0, f(n) is eventually lower-bounded by cg(n).
Ω(g) contains all the functions that grow at least as fast as g, and for f ∈ Ω(g), we say that g is the asymptotic lower
bound of f .

Theorem 2.37 (Duality of Big-O and Big-Ω). For any functions f : N → R+ and g : N → R+, we have
f ∈ O(g) ↔ g ∈ Ω(f)

Definition 2.38 (Big-Θ Notation). Let f, g : N → R+ be two functions. We have:
f ∈ Θ(g) ≡ f ∈ O(g) ∧ f ∈ Ω(g)

Or, using the previous form of definition,
Θ(g) := {f : N → R+ | ∃c1, c2 > 0, ∃n0 ∈ N, ∀n ≥ n0(c1g(n) ≤ f(n) ≤ c2g(n))}

We say that g is the asymptotic tight bound of f .
Symmetric Property: f ∈ Θ(g) ↔ g ∈ Θ(f).

Remark. The relation f R g : f ∈ Θ(g) is an equivalence relation.

Remark. To determine whether f ∈ O(g), Ω(g) or Θ(g), we can use the limit test:

lim
n→∞

f(n)
g(n) =


0 ⇒ f ∈ O(g) but f /∈ Ω(g)
c ∈ R+ ⇒ f ∈ Θ(g)
∞ ⇒ f ∈ Ω(g) but f /∈ O(g)

Further, when limn→∞
f(n)
g(n) = c ∈ R+, such constant c can be used as c1 or c2 in the definition of Θ.

3 Counting & Probability
3.1 Fundamentals of Counting

Theorem 3.1 (Product Rule). If a procedure can be broken down into k tasks, where the first task can be done in n1
ways, and for each way of doing the first task the second task can be done in n2 ways, and so on, then the entire
procedure can be done in n1n2 · · · nk ways.

Theorem 3.2 (Product Rule for Finite Sets). For some finite sets A1, A2, . . . , Ak, the number of ordered list
(a1, a2, . . . , ak) where ai ∈ Ai for i = 1, 2, . . . , k is

|A1| · |A2| · · · |Ak| =
k∏

i=1
|Ai|

Corollary 3.3. For some finite sets A1, A2, . . . , Ak, if all of them are identical, say, A, then a sequence of length n with
entries from A is an ordered list (a1, a2, . . . , ak) where ai ∈ A for i = 1, 2, . . . , k. The number of such n-sequences is

|A|n

With the Product Rule, we can solve problems like:

Example (Counting Functions). Find the number of functions f : A → B, provided that A and B are finite sets.
Solution: A function f : A → B can be constructed by assigning each element in A to an element in B. This can be
broken down into |A| tasks, where the i-th task is to assign f(ai) ∈ B for some ai ∈ A. The i-th task can be done in
|B| ways.
By the Product Rule, the total number of ways to construct such function is

|B||A|

Example (Counting Injective Functions). Find the number of injective functions f : A → B, provided that A and B
are finite sets.
Solution: First, note that if |A| > |B|, then there is no injective function from A to B. Now, suppose |A| ≤ |B|. An
injective function f : A → B can be constructed by several steps. First, we choose an element a1 ∈ A. There are |B|
ways to choose a f(a1) ∈ B. Next, we choose another element a2 ∈ A. Since f is injective, there are |B| − 1 ways to

10

choose f(a2) ∈ B. Continuing this way, we can see that the i-th task can be done in |B| − i + 1 ways.
Therefore, the number of injective functions from A to B is

|B| (|B| − 1)(|B| − 2) · · · (|B| − |A| + 1) = |B|!
(|B| − |A|)!

provided that |A| ≤ |B|.

Theorem 3.4 (Inclusion-Exclusion Principle). For some sets A1, A2, . . . , An,∣∣∣∣∣
n⋃

i=1
Ai

∣∣∣∣∣ =
∑

i

|Ai| −
∑
i<j

|Ai ∩ Aj | +
∑

i<j<k

|Ai ∩ Aj ∩ Ak| − · · · + (−1)n+1 |A1 ∩ A2 ∩ · · · ∩ An|

3.2 Permutations and Combinations

Definition 3.5 (Permutation). A permutation of a set A is an ordered arrangement of all the elements of A. The
number of permutations of a set with n elements is n!.

Definition 3.6 (r-Permutation). An r-permutation of a set A is an ordered arrangement of r elements of A. The
number of r-permutations of a set with n elements is denoted by

P (n, r) = n!
(n − r)! , r ∈ [0, n]

Definition 3.7 (r-Combination). An r-combination of a set A is an unordered selection of r elements of A. Thus, an
r-combination is simply a subset of A with r elements. The number of r-combinations of a set with n elements is
denoted by

C(n, r) =
(

n

r

)
= n!

r!(n − r)! , r ∈ [0, n]

The notation
(

n
r

)
is called a binomial coefficient.

Below are some useful properties of binomial coefficients:

Corollary 3.8 (Symmetry of Binomial Coefficients). Let n and r be nonnegative integers with r ≤ n. Then(
n

r

)
=

(
n

n − r

)

Corollary 3.9 (Sum of Binomial Coefficients). Let n be a nonnegative integer. Then
n∑

k=0

(
n

k

)
= 2n

Corollary 3.10 (Recursive Formula of Binomial Coefficients). Let n > m ≥ 1 be integers. Then(
n

m

)
=

(
n − 1

m

)
+

(
n − 1
m − 1

)

Theorem 3.11 (Vandermonde’s Identity). Let m, n and r be nonnegative integers with r not exceeding either m or n.
Then

r∑
k=0

(
m

k

)(
n

r − k

)
=

(
m + n

r

)

Definition 3.12 (Equivalence Upon Reshuffling). Two permutations are said to be equivalent upon reshuffling if they
correspond to the same combination. For example, the permutations (a, b, c), (b, c, a) and (c, a, b) are equivalent
upon reshuffling, since they correspond to the same combination {a, b, c}. The number of k-permutations that are
equivalent upon reshuffling is k!.

11

3.2.1 Permutations and Combinations with Repetitions

Theorem 3.13 (r-Permutations with Repetitions). The number of r-permutations of a set with n elements when
repetitions are allowed is

nr

Theorem 3.14 (Combinations with Repetitions). The number of r-combinations of a set with n elements when repeti-
tions are allowed is (

n + r − 1
r

)
=

(
n + r − 1

n − 1

)

Corollary 3.15 (Permutations of Indistinguishable Objects). The number of different permutations of n objects, where
there are n1 indistinguishable objects of type 1, n2 indistinguishable objects of type 2, . . ., and nk indistinguishable
objects of type k, is

k∏
i=1

(
n −

∑i−1
j=1 nj

ni

)
= n!∏k

i=1 ni!
or in simpler form, (

n

n1

)(
n − n1

n2

)
· · ·

(
n − n1 − · · · − nk−1

nk

)
= n!

n1!n2! · · · nk!
where

∑k
i=1 ni = n.

3.3 Pigeonhole Principle

Theorem 3.16 (Pigeonhole Principle). If n objects are to be put into m containers, with n > m, then at least one
container must contain more than one object.

Corollary 3.17 (Generalised Pigeonhole Principle). If n objects are to be put into m containers, then at least one
container must contain at least

⌈ n

m

⌉
objects.

Example (Application of Pigeonhole Principle). During a month of 30 days, a team plays at least one game a day, but
no more than 45 games in total.
Thesis: There must exist a period of some consecutive days during which exactly 14 games are played.

Proof.
Let ai be the number total games played before the end of the i-th day, then we have a distinct increasing
sequence of integers 1 ≤ a1 < a2 < · · · < a30 ≤ 45. We also let aj := ai + 14, then we have another sequence
of distinct increasing integers 15 ≤ a1 + 14 < a2 + 14 < . . . < a30 + 14 ≤ 59. Now, we have 60 integers
a1, a2, . . . , a30, a1 + 14, a2 + 14, . . . , a30 + 14 whose values are in the range of [1, 59]. Since there are 60 integers
but only 59 possible values, by the Pigeonhole Principle, at least two of the integers are the same. Also, as the
integers a1, a2, . . . , a30 are distinct, as so are the integers a1 + 14, a2 + 14, . . . , a30 + 14, the two identical integers
must be from different sequences, i.e., there exist indices i and j, such that ai = aj + 14. This means that exactly
14 games were played from the (j + 1)-th day to the i-th day.

Q.E.D.

3.4 Fundamental Probability

Definition 3.18 (Probability Distribution). Let S be a finite set, or we call the sample space. A probability distribution
on S is a function p : S → [0, 1] that maps each outcome x ∈ S to its probability p(x), such that it satisfies:∑

x∈S

p(x) = 1

Definition 3.19 (Probability of Subsets). Let p : S → [0, 1] be a probability distribution on S, and let A ⊆ S be a
subset of S. A is also called an event. The probability of the event A is defined as

P (A) =
∑
x∈A

p(x)

Remark. We have the following facts: (1) P (∅) = 0 and P (S) = 1; (2) P ({x}) = p(x); (3) A ⊆ S ⇒ P (A) ≤ P (S);

12

Definition 3.20 (Uniform Probability Distribution). Let S be a finite sample space. The uniform probability distribution
on S is defined as

p(x) = 1
|S|

, ∀x ∈ S

Note that we have ∀A ⊆ S : P (A) = |A|
|S| . Under uniform probability distribution, to compute the probability of an

event, it is equivalent to counting.

Definition 3.21 (Equal Probability Assumption). Let S be a finite sample space, in the absence of any additional
information, we assume that all outcomes in S are equally likely. This is called the equal probability assumption.

4 Graphs

13

	Logic & Proofs
	Propositional Logic
	Boolean Algebra
	Logical Equivalence

	Predicate Logic
	Proofs
	Direct Proof
	Proof by Contraposition
	Proof by Contradiction
	Proof by Cases
	Equivalence Proof

	Sets, Relations, & Functions
	Sets
	Basics on Sets
	Relationships of Sets
	Set Operations
	Set Theory & Logic

	Relations
	Definition & Properties of Relations
	Equivalence Classes & Partitions

	Functions
	Definition & Terminology
	Types of Functions
	Operations on Functions
	Real-valued Functions
	Growth of Functions

	Counting & Probability
	Fundamentals of Counting
	Permutations and Combinations
	Permutations and Combinations with Repetitions

	Pigeonhole Principle
	Fundamental Probability

	Graphs

