COMP2120 Computer Organisation

24/25 Semester 2
Assignment 4

This assignment is based on the CPU and simulator in Assignment 2.

D-Bus S1-Bus S2-Bus

«~——c]«— A

P)
. Reg}fter
"¢ |s[RrrouT2

f

Y

[> >
PC
j
@ > >
SP

TEMP <
"| MAR
* > ——@——>
® > MBR >

External
Memory

Figure 1: A simplified CPU

In this assignment, extra instructions are added. They are the PUSH, POP, CALL and RET instruction. In order to implement
these instructions, the CPU is modified as follows:

1. A new register (SP, the stack pointer) is included. SP provides output to S1-bus, and receives input from D-bus. Also, the

Page 1 of 6

SP has special hardware to increase and decrease its value by 4 (similar to PC). This is provided by the special function
do-incSP (), and do_decSP (), which is in turn controlled by the flag incSP and decSP.

2. A new register (TEMP) is included, which is directly connected to the MAR only, via a dedicated data path. Again you can move
data between MAR and TEMP and special function do_ MAR_to_TEMP () and do_TEMP_to_MAR () are provided, which are
controlled by the MAR_to_TEMP and TEMP_t o_MAR flag.

3. A new flag push_pop is included, which will move the SP to MAR. Otherwise, the CPU remains the same.

New instructions provided include:

PUSH Rn : SP < SP-4; mem[SP] < Rn

[00001010 | n | 00000000 [00000000 |
POP Rn : Rn ¢ mem[SP]; SP <« SP+4

[00001011 [00000000 [00000000 | n \
CALL proc

[00001100 [00000000 [11111111 [00000000

RET :
[00001101 [00000000 [00000000 | 00000000

Summary Opcode:

Instruction Opcode Instruction Opcode Instruction Opcode
ADD 00000000 MOV 00000101 PUSH 00001010
SUB 00000001 LD 00000110 POP 00001011
NOT 00000010 ST 00000111 CALL 00001100
AND 00000011 Bcc 00001000 RET 00001101
OR 00000100 HLT 00001001

The Program
The revised simulator program is given in sim2 . py. Study the simulator code carefully.

1. Hand assemble the following assembly code and put it in a program file. Run the simulator on this program. Explain what the
function SQ does?

SUB R4,R4,R4 0000H: 01040404

LD P1,R1 0004H: 0600££01 00000078

MOV R1,R2 000CH: 05010002

LD P2,R3 0010H: 0600f££03 0000007c
L: MOV R1,R10 0018H: 0501000a

CALL SO 001CH: 0cOOff00 00000044

ADD R4,R11,R4 0024H: 00040b04

ADD R1,R2,R1 0028H: 00010201

SUB R3,R1,R5 002CH: 01030105

BNZ L 0030H: 0802f£f00 00000018

ST R4,P 0038H: 0704££00 00000080

HLT 0040H: 09000000

/* Procedure to calculate <?2?2?2?2?>, input is R10, output is R11 */

/+* The proc uses R12 and R13, need to save them on entry */
/+ and restore them on exit */
SQ: PUSH R12 0044H:

PUSH R13 0048H:

1D P1,R13 004CH:

SUB R13,R13,R13 0054H:

Page 2 of 6

MOV
L2: ADD
SUB
BNZ
POP
POP
RET
P1 .WORD
P2 .WORD
P .WORD

R10,R12
R11,R10,R11
R12,R13,R12
L2

R13

R12

1
A

0058H:
005CH:
0060H:
0064H:
006CH:
0070H:
0074H:
0078H:
007CH:
0080H:

00000001
0000000a
00000000

2. Run the simulator in debug mode. Write down the data transfer/transformation sequences involved in the execution of the
instructions CALL and RET. You may skip intermediate step provided by the simulator, for example the in struction fetchs step

should look like:

MAR <- PC
IR <— mem[MAR]

Page 3 of 6

or in English, move the value of PC to MAR. Then read memory and the result (mem [MAR]) is moved to IR, i.e. just write down
the source and destination of the data movement, without the paths etc.

Solution: The comments in the code are optional and are not required for the submission.

For CALL instruction:

MAR <- PC ; instruction fetch

IR <- mem[MAR]

MAR <- PC ; address of next word

MBR <- mem[MAR] ; reads address of called instruction
MAR <- MBR

PC <- PC + 4 ; point to the instruction after return
TEMP <- MAR ; put called instruction address in TEMP
SP <- SP { 4 ; decrement stack ptr for pushing

MAR <- SP ; get address for pushing to top of stack
MBR <- PC ; put return target in MBR

mem[SP] <- MBR ; push return target to stack

MAR <- TEMP ; retrieve called instruction address

PC <- MAR ; point PC to called instruction

For RET instruction:

MAR <- PC ; instruction fetch

IR <- mem[MAR]

MAR <- SP ; get address of top of stack

SP <- SP + 4 ; pop (increment ptr)

MBR <- mem[MAR] ; pop top of stack to MBR (return address)

PC <- MBR ; point PC to where the routine was suspended

3. Modify the program so that it will calculate the value of 1 —24+3 -4+ ... —8+9. That is,
sum = 0;
for i=1 to 9 do sum += sqg(i)
Where sq (1) return i when 1 is odd, otherwise return —i. Note that the original program is already a loop from 1 to 9. Just
replace the function SQ by
if (R10 is odd) R11 = R10;

else R11 = 0 - R10;

Since we don’t have a NEG instruction, to find x, we use 0 — x. To check if a number x is odd, just check if the rightmost bit is 1.
We can find x AND 00000000...0001. (i.e. 1) After AND operation, all bits ANDed with 0 will be 0. If the rightmost bit is
0, then the result is 0. Otherwise the result is non-zero. Note that the address of P1, P2 and P may got changed when the length
of the function SQ is changed. You may need to change the address of them in the program, e.g. in line 2

1D P1,R1

you may need to find the new address of P1, and also in line 4...

Page 4 of 6

Page 5 of 6

Page 6 of 6

