COMP2120 Computer Organisation

24/25 Semester 2
Assignment 2

1. Consider a simple 32-bit processor with the data path as shown in fig. 1. The processor has 32 general purpose registers. There
are 3 buses, S1-bus, S2-bus and D-bus connecting the registers for data movement. The register files has 2 read ports and 1 write
port (i.e. it can perform 2 read and 1 write at the same time).

D-Bus S1-Bus S2-Bus
A -«
< C |« ALU
B |« ®
Regi RFOUT1 >
¢ > RFIN - egister
File
T RFOUT2 >
? ” PC g
IncPC
[> MAR ® >
® > MBR >
A
IR
e
Y
External .
Memory)

Figure 1: A simplified CPU

The processor has instructions which specifies 3 operands explicitly (namely, 2 source and 1 destination operands). The leftmost

Page 1 of 6

byte of the instruction represents the oper- ation to be performed, such as ADD, SUB etc. For arithmetic and logic operations, the
operands must be in registers. Hence the 3 bytes will give the addresses of operands in the register file. There will be a direct path
connecting these 3 bytes in the IR (Instruction Register) to the address of the register file, so that when you perform read/write
on register file, the register specified in these bytes will be accessed.

If the instruction is LOAD or STORE to load a word from memory to register, and vice versa, the source operand (LOAD) or
destination operand (STORE) refer to a memory address. How to find this address is specified by Addressing Mode. In this
machine, for simiplicity, the memory operand byte (source/destination) will always be 1111 1111 (or in hex 0xff), which
means that the actual 32-bit memory address will be given in the word following the instruction (see example program below).

The ALU has the following operations: ADD, SUB, bitwise AND, OR, and NOT. For operations with only one operand (e.g. NOT),
source operand 1 is used, and source operand 2 is empty.

Finally, there is a branch instruction, which performs conditional or unconditional branch as specified in the cc field of the
instruction. The branch address is specified in the word following the instruction, the same as in LOAD/STORE instruction.

Instruction Format

Arithmetic/Logic Instruction

The instruction format of the machine (except LOAD/STORE/BRANCH):

] Opcode \ Source Operand 1 \ Source Operand 2 \ Destination Operand ‘

The instructions can be categorized into the following types:

¢ Arithmetic Operations

ADD R1, R2, R3 ; R3 <- Rl + R2
SUB R1, R2, R3 ; R3 <- Rl - R2

* Logic Operations

AND R1, R2, R3 ; R3 <- Rl AND R2
OR R1, R2, R3 ; R3 <- Rl OR R2
NOT R1, R3 : R3 <— NOT RI1

¢ Data Movement Instruction
MOV R1, R3 ; R3 <- R1

Note that in the NOT and MOV operations, source operand 2 field is not used and will be set as 0000 0000.

Load/Store Instruction

Moving data from Memory to registers and vice versa.

LD A, R3 ; R3 <- A, A is in memory
ST R3, A ; A <- R3, A is in memory

Load instruction:

| Opcode (Load) [00000000 | Addressing Mode | Destination Operand |

Store instruction:

’ Opcode (Store) \ Source Operand \ Addressing Mode \ 00000000 ‘

where the addressing mode (how to find the target address) is specified in byte 2 of the instruction. In this machine, only one
addressing mode is used, where the target address is given by the word following the LOAD or STORE instruction (Absolute
Addressing). This is specified as 11111111 in that byte.

Page 2 of 6

Control Instruction

Control flow is by using BRANCH instruction. There are two types of branch instruction — conditional and unconditional Branch.
Branch Instruction Format:

| Opcode (Branch) | Condition Code (cc) | Addressing Mode [00000000 |

Conditional branch is based on the result of previous ALU operation, which is store in a flag register. In this machine, we only
use a ZERO flag, which will be set to 1 if the ALU operation results in 0, and set to 0 otherwise. The target address is specified
in the same way as in memory operation. Similarly, the byte of Addressing Mode is set to 11111111. The condition code is
specified as

Condition Code (cc) | Instruction Description
00000000 BR Unconditional Branch, always goto
00000001 BZ Branch if ZERO flag is set
00000010 BNZ Branch if ZERO flag is not set

Halt Instruction

The HLT instruction is used to stop the program. The other 3 bytes are all 0.

Opcodes
Instruction Opcode Instruction Opcode Instruction Opcode
ADD 00000000 OR 00000100 Bcc 00001000
SUB 00000001 MOV 00000101 HLT 00001001
NOT 00000010 LD 00000110
AND 00000011 ST 00000111

Part I: Example Program

The simulator program is given in sim.py. The code for the SUB and ST instruction is missing. Study the simulator code

carefully, and complete the missing part.

Author’s Note: The code files are also provided on the website. Click on the “Download Attachments” button to
download.

Solution: (The missing parts in the example program:)

Note that the comments are included for explanation only, and are not required in your submission.

def set_ SUB():

Fill in the code for SUB instruction here

Signal["calc_addr"] = 0 # Disable address calculation (not needed)

Signal ["branch"] = 0 # This is not a branch instruction

Signal["read RF_port_1"] =1 # Enable read from RF1 (source operand 1)
Signal["read_RF_port_2"] = 1 # Enable read from RF2 (source operand 2)

Signal ["write_RF"] = 1 # Enable writing to register file (destination operand)
Signal["src_of_S1"] = "RFOUT1" # Connect Sl-bus source to register file output port 1
Signal["dst_of_S1"] = "A" # Route Sl-bus destination to ALU input A

Signal ["src_of_S2"] = "RFOUT2" # Connect S2-bus source to register file output port 2
Signal["dst_of_S2"] = "B" # Route S2-bus destination to ALU input B
Signal["src_of_D"] = "C" # Connect D-bus source to ALU output C
Signal["dst_of_D"] = "REFIN" # Route D-bus destination to register file input
Signal["doalu"] =1 # Enable ALU operation

Signal ["ALU_func"] = "OP_SUB" # Set ALU function to subtraction operation

Page 3 of 6

235

236

237

238

239

240

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

Signal ["move_via_S1"] = 1
Signal ["move_via_S2"] = 1
Signal ["move_via_D"] = 1
Signal ["read_memory"] = 0
Signal["write_memory"] = 0
Signal ["dohalt"] = O

FH o R R I K

Enable data movement through Sl1-bus

Enable data movement through S2-bus

Enable data movement through D-bus

Disable memory read (not a load instruction)
Disable memory write (not a store instruction)
Do not halt the processor

def set_ST():

Fill in the code for ST instruction here

Signal["calc_addr"] =1
Signal ["branch"] = 0

Signal["read_RF_port_1"]
Signal ["read RF_port_2"]

[

[

[

[
Signal["write_RF"] = 0
Signal["src_of_S1"] = "RFOUT1"
Signal["dst_of_S1"] = "A"
Signal["src_of_S2"] = ""
Signal["dst_of_S2"] = ""
Signal["src_of_D"] = "C"
Signal["dst_of_D"] "MBR"
Signal["doalu"] = 1
Signal ["ALU_func"] = "OP_COPY"
Signal ["move_via_S1"] = 1
Signal ["move_via_S2"] = 0
Signal["move_via_D"] = 1
Signal ["read_memory"] = 0
Signal ["write_memory"] = 1
Signal ["dohalt"] = 0

#

S oFH W O H O W W H H W K R W W W R H

Enable address calculation (needed for OxXFF mode)

This is not a branch instruction

Enable read from RF1 (source operand - register)
Disable read from RF2 (not needed for store)

Disable writing to register file (storing to memory)
Connect Sl-bus source to register file output port 1
Route Sl-bus destination to ALU input A

S2-bus source not needed (no second operand)

S2-bus destination not needed (no second operand)
Connect D-bus source to ALU output C

Route D-bus destination to Memory Buffer Register
Enable ALU operation

Set ALU function to copy operation (pass data through)
Enable data movement through Sl-bus

Disable data movement through S2-bus (not used)

Enable data movement through D-bus
Disable memory read (this is a store, not load)
Enable memory write (store data to memory)

Do not halt the processor

Running the simulator program:

[python3] sim.py

[-d]

prog

If —d option is specified, the program will print out debug information. The simulator obtains input program from the file prog.
Test you simulator with the following simple program:

1D PO, R4
1D P1,R1
MOV R1,R2
1D P2,R3

L: ADD R4,R1,R4
ADD R1,R2,R1
SUB R3,R1,R5
BNZ L
ST R4, P
HLT

PO: .WORD O

Pl: .WORD 1

P2: .WORD A

P: .WORD

What does this program do?

0000: 0600££04 0000003c
0008: 0600££01 00000040
0010: 05010002
0014: 0600££03 00000044
001cC: 00040104
0020: 00010201
0024: 01010305
0028: 0802£f£00 0000001c
0030: 0704££00 00000048
0038: 09000000
003C: 00000000
0040: 00000001
0044: 0000000a
0048: 00000000

Solution: The program computes the sum of integers from 1 to 9.

Explanation: After the first four lines, the registers are initialized as follows:

* R4 =0 (loaded from memory address PO - 0x3C)

Page 4 of 6

Part II: Hand Assemble

Translate the following program into hexadecimal form, and put it in a file named prog2 with the same format as the file prog.
Run the simulator by

[python3] sim.py [-d] prog2
Write down the final result stored in P. What does the program do?

1D PO, R4
1D P1, R1
1D P2, R2
1D P3, R3
L: ADD R4, R2, R4
SUB R3, Rl, R3

BNZ L
ST R4, P
HLT

PO: .WORD 0

Pl: .WORD 1

P2: .WORD 5

P3: .WORD 4

P: .WORD

A working simulator (executable . pyc file only, without source code) is given to you, so that you can complete this part using
this program, if your simulator in Part I is not working.

Page 5 of 6

Page 6 of 6

