
COMP2120 Computer Organisation
24/25 Semester 2

Assignment 2

1. Consider a simple 32-bit processor with the data path as shown in fig. 1. The processor has 32 general purpose registers. There
are 3 buses, S1-bus, S2-bus and D-bus connecting the registers for data movement. The register files has 2 read ports and 1 write
port (i.e. it can perform 2 read and 1 write at the same time).

D-Bus S1-Bus S2-Bus

ALU

A

B

C

Register
File

RFOUT1

RFOUT2

RFIN

PC

IncPC

MAR

MBR

IR

External
Memory

Figure 1: A simplified CPU

The processor has instructions which specifies 3 operands explicitly (namely, 2 source and 1 destination operands). The leftmost

Page 1 of 6



byte of the instruction represents the oper- ation to be performed, such as ADD, SUB etc. For arithmetic and logic operations, the
operands must be in registers. Hence the 3 bytes will give the addresses of operands in the register file. There will be a direct path
connecting these 3 bytes in the IR (Instruction Register) to the address of the register file, so that when you perform read/write
on register file, the register specified in these bytes will be accessed.

If the instruction is LOAD or STORE to load a word from memory to register, and vice versa, the source operand (LOAD) or
destination operand (STORE) refer to a memory address. How to find this address is specified by Addressing Mode. In this
machine, for simiplicity, the memory operand byte (source/destination) will always be 1111 1111 (or in hex 0xff), which
means that the actual 32-bit memory address will be given in the word following the instruction (see example program below).

The ALU has the following operations: ADD, SUB, bitwise AND, OR, and NOT. For operations with only one operand (e.g. NOT),
source operand 1 is used, and source operand 2 is empty.

Finally, there is a branch instruction, which performs conditional or unconditional branch as specified in the cc field of the
instruction. The branch address is specified in the word following the instruction, the same as in LOAD/STORE instruction.

Instruction Format

Arithmetic/Logic Instruction

The instruction format of the machine (except LOAD/STORE/BRANCH):

Opcode Source Operand 1 Source Operand 2 Destination Operand

The instructions can be categorized into the following types:

• Arithmetic Operations

ADD R1, R2, R3 ; R3 <- R1 + R2
SUB R1, R2, R3 ; R3 <- R1 - R2

• Logic Operations

AND R1, R2, R3 ; R3 <- R1 AND R2
OR R1, R2, R3 ; R3 <- R1 OR R2
NOT R1, R3 ; R3 <- NOT R1

• Data Movement Instruction

MOV R1, R3 ; R3 <- R1

Note that in the NOT and MOV operations, source operand 2 field is not used and will be set as 0000 0000.

Load/Store Instruction

Moving data from Memory to registers and vice versa.

LD A, R3 ; R3 <- A, A is in memory
ST R3, A ; A <- R3, A is in memory

Load instruction:

Opcode (Load) 00000000 Addressing Mode Destination Operand

Store instruction:

Opcode (Store) Source Operand Addressing Mode 00000000

where the addressing mode (how to find the target address) is specified in byte 2 of the instruction. In this machine, only one
addressing mode is used, where the target address is given by the word following the LOAD or STORE instruction (Absolute
Addressing). This is specified as 11111111 in that byte.

Page 2 of 6



Control Instruction

Control flow is by using BRANCH instruction. There are two types of branch instruction — conditional and unconditional Branch.
Branch Instruction Format:

Opcode (Branch) Condition Code (cc) Addressing Mode 00000000

Conditional branch is based on the result of previous ALU operation, which is store in a flag register. In this machine, we only
use a ZERO flag, which will be set to 1 if the ALU operation results in 0, and set to 0 otherwise. The target address is specified
in the same way as in memory operation. Similarly, the byte of Addressing Mode is set to 11111111. The condition code is
specified as

Condition Code (cc) Instruction Description
00000000 BR Unconditional Branch, always goto
00000001 BZ Branch if ZERO flag is set
00000010 BNZ Branch if ZERO flag is not set

Halt Instruction

The HLT instruction is used to stop the program. The other 3 bytes are all 0.

Opcodes

Instruction Opcode Instruction Opcode Instruction Opcode
ADD 00000000 OR 00000100 Bcc 00001000
SUB 00000001 MOV 00000101 HLT 00001001
NOT 00000010 LD 00000110
AND 00000011 ST 00000111

Part I: Example Program

The simulator program is given in sim.py. The code for the SUB and ST instruction is missing. Study the simulator code
carefully, and complete the missing part.

Author’s Note: The code files are also provided on the website. Click on the “Download Attachments” button to
download.

Solution: (The missing parts in the example program:)

Note that the comments are included for explanation only, and are not required in your submission.

220 def set_SUB():
221 # Fill in the code for SUB instruction here
222 Signal["calc_addr"] = 0 # Disable address calculation (not needed)
223 Signal["branch"] = 0 # This is not a branch instruction
224 Signal["read_RF_port_1"] = 1 # Enable read from RF1 (source operand 1)
225 Signal["read_RF_port_2"] = 1 # Enable read from RF2 (source operand 2)
226 Signal["write_RF"] = 1 # Enable writing to register file (destination operand)
227 Signal["src_of_S1"] = "RFOUT1" # Connect S1-bus source to register file output port 1
228 Signal["dst_of_S1"] = "A" # Route S1-bus destination to ALU input A
229 Signal["src_of_S2"] = "RFOUT2" # Connect S2-bus source to register file output port 2
230 Signal["dst_of_S2"] = "B" # Route S2-bus destination to ALU input B
231 Signal["src_of_D"] = "C" # Connect D-bus source to ALU output C
232 Signal["dst_of_D"] = "RFIN" # Route D-bus destination to register file input
233 Signal["doalu"] = 1 # Enable ALU operation
234 Signal["ALU_func"] = "OP_SUB" # Set ALU function to subtraction operation

Page 3 of 6



235 Signal["move_via_S1"] = 1 # Enable data movement through S1-bus
236 Signal["move_via_S2"] = 1 # Enable data movement through S2-bus
237 Signal["move_via_D"] = 1 # Enable data movement through D-bus
238 Signal["read_memory"] = 0 # Disable memory read (not a load instruction)
239 Signal["write_memory"] = 0 # Disable memory write (not a store instruction)
240 Signal["dohalt"] = 0 # Do not halt the processor

347 def set_ST():
348 # Fill in the code for ST instruction here
349 Signal["calc_addr"] = 1 # Enable address calculation (needed for 0xFF mode)
350 Signal["branch"] = 0 # This is not a branch instruction
351 Signal["read_RF_port_1"] = 1 # Enable read from RF1 (source operand - register)
352 Signal["read_RF_port_2"] = 0 # Disable read from RF2 (not needed for store)
353 Signal["write_RF"] = 0 # Disable writing to register file (storing to memory)
354 Signal["src_of_S1"] = "RFOUT1" # Connect S1-bus source to register file output port 1
355 Signal["dst_of_S1"] = "A" # Route S1-bus destination to ALU input A
356 Signal["src_of_S2"] = "" # S2-bus source not needed (no second operand)
357 Signal["dst_of_S2"] = "" # S2-bus destination not needed (no second operand)
358 Signal["src_of_D"] = "C" # Connect D-bus source to ALU output C
359 Signal["dst_of_D"] = "MBR" # Route D-bus destination to Memory Buffer Register
360 Signal["doalu"] = 1 # Enable ALU operation
361 Signal["ALU_func"] = "OP_COPY" # Set ALU function to copy operation (pass data through)
362 Signal["move_via_S1"] = 1 # Enable data movement through S1-bus
363 Signal["move_via_S2"] = 0 # Disable data movement through S2-bus (not used)
364 Signal["move_via_D"] = 1 # Enable data movement through D-bus
365 Signal["read_memory"] = 0 # Disable memory read (this is a store, not load)
366 Signal["write_memory"] = 1 # Enable memory write (store data to memory)
367 Signal["dohalt"] = 0 # Do not halt the processor

Running the simulator program:

[python3] sim.py [-d] prog

If -d option is specified, the program will print out debug information. The simulator obtains input program from the file prog.
Test you simulator with the following simple program:

LD P0,R4 0000: 0600ff04 0000003c
LD P1,R1 0008: 0600ff01 00000040
MOV R1,R2 0010: 05010002
LD P2,R3 0014: 0600ff03 00000044

L: ADD R4,R1,R4 001C: 00040104
ADD R1,R2,R1 0020: 00010201
SUB R3,R1,R5 0024: 01010305
BNZ L 0028: 0802ff00 0000001c
ST R4,P 0030: 0704ff00 00000048
HLT 0038: 09000000

P0: .WORD 0 003C: 00000000
P1: .WORD 1 0040: 00000001
P2: .WORD A 0044: 0000000a
P: .WORD 0048: 00000000

What does this program do?

Solution: The program computes the sum of integers from 1 to 9.

Explanation: After the first four lines, the registers are initialized as follows:

• R4 = 0 (loaded from memory address P0 - 0x3C)

Page 4 of 6



• R1 = 1 (loaded from memory address P1 - 0x40)

• R2 = 1 (copied from R1, this is a constant as no operations use it as destination)

• R3 = 10 (loaded from memory address P2 - 0x44, also a constant)

In every iteration of the loop labeled L:, the following operations occur:

• R4 is incremented by the value in R1

• R1 is incremented by the constant 1 (from R2)

• R5 is set to be R3 (10) - R1

• If the previous operation results in non-zero, i.e., R1 ̸= 10, branch back to L:

When R1 reaches 10, R4 will have accumulated the sum of integers from 1 to 9. Finally, the value in R4 is stored back to
memory address P - 0x48, and the program halts.

Part II: Hand Assemble

Translate the following program into hexadecimal form, and put it in a file named prog2 with the same format as the file prog.
Run the simulator by

[python3] sim.py [-d] prog2

Write down the final result stored in P. What does the program do?

LD P0, R4
LD P1, R1
LD P2, R2
LD P3, R3

L: ADD R4, R2, R4
SUB R3, R1, R3
BNZ L
ST R4, P
HLT

P0: .WORD 0
P1: .WORD 1
P2: .WORD 5
P3: .WORD 4
P: .WORD

A working simulator (executable .pyc file only, without source code) is given to you, so that you can complete this part using
this program, if your simulator in Part I is not working.

Solution: The program is hand assembled as follows:

0600ff04
0000003c
0600ff01
00000040
0600ff02
00000044
0600ff03
00000048
00040204

Page 5 of 6



01030103
0802ff00
00000020
0704ff00
0000004C
09000000
00000000
00000001
00000005
00000004
00000000

The purpose of this program is to compute the sum of 5+ 5+ 5+ 5 = 20. The final result stored in memory address P is
0x00000014.

Page 6 of 6


