1 Linuxand Shell
Linux Commands
1s [options] [file] List directory contents
-a Include hidden files
-1 Long listing format
Example output:
-ruxr-r- 1 jacob sudoer 40 Jan 1 00:00 file.cpp
- Entry type (d: directory, -: file)

rwxXr-r- Permissions (owner, group, others)
1 Number of hard links
jacob Owner
sudoer Group
4096 Size in bytes
Jan 1 00:00 Last modified date
file.cpp File name

chmod [u/g/o/all+/-/=1[r/w/x] file
Change permissions

rm [options] file/dir Remove file or directory

-r Recursively remove
-f Force remove
rmdir dir Remove empty directory
cp [-r] src dest Copy file or directory
-r src=dir: copy dir and subtree;
src=dir/: copy contents of dir
src=file, dest=file Overwrite dest with src
src=file, dest=dir Copy file into dir
mv src dest Move file or directory
src=file, dest=file || src=dir, dest=dir
Renames src with dest
src=file, dest=dir Moves src into dest

src=dir, dest=empty_dir
Moves src into dest recursive
Word count
Count lines
-w Count words
-c Count bytes
-m Count characters
Example output: 12 3 file.txt
sort [-nr|-k<n>|-t<char>] file/stdin
Sort lines of text

we {—lwcm] file

-n Numeric sort
-r Reverse sort
—-k<n> Sort by column n (1-indexed)

—t<char> Use char (" " by default) as delimiter
cut -d <char> [-f<n,m,...>] file/stdin

Get fields from lines

Use char as delimiter

Get fields n, m, (1-indexed)

Remove adjacent duplicate lines

Get missspelt words, 1 per line

Compare files

-d <char>

—f<n,m,...>
uniq file/stdin
spell file/stdin
diff fileA fileB
Example output:

0al Add line 1 of B after line 0 of A
> contents to be added

2,3c Change lines 2-3 of A to line 2 of B
< contents of A to be deleted

< contents of A to be deleted

> contents of B to be added

Delete line 4(A) and be in sync from line 5(B)
find path [-name <name>] [-type f|d]
Find items under path
-name <name> Find items with name
—-type f|d Find files (f) or dirs (d) only
grep [-E <regexpr> | pattern] [-o] file/stdin
Search for pattern
-E <regexpr> Match regular expression
-0 Only print matching part of line
pattern Match pattern
command < in_file n> out_file
Redirect input and output
in_file to stdin
stdout(1) or stderr(2) to out_file
Append to out_file

separator

< in_file
n> out_file
n>> out_file

n>/dev/null Discard stdout or stderr
2>81 Redirect stderr to stdout
cmdl | emd2 Pipe stdout of cmdl to stdin of cmd2

cmdl && cmd2 Execute cmd2 iff cmdl succeeds

cmdl || emd2 Execute cmd2 iff cmdl fails
Shell Script
#!/bin/bash
Variables
VAR_NAME=value

Declares execution shell

No spaces around =
read VAR_NAME Read input into variable
SVAR_NAME Access variable
eval="$(cmd) $var" vs no_eval='$(cmd) Svar'

String Operations

${#ta} Length of a
${a:pos:len} Substr from pos (0-indexed) for len
${a/find/replace} Replace first occurence
${a//find/replace} Replace all occurences
let "expr" Treat values in expr as numbers
Command Line Arguments
S# Number of arguments
$1 Access argument ($0 is script name)
${10} Access 10th+ argument
Control Flow
if [condl]1; then cmdl; elif [cond2 1; then
cmd2; else cmd3; fi
["$VAR"] True if $VAR is not empty
["$VAR" == "value"] $VAR is equal to value
["$VAR" != "value"] $VAR is not equal to value
["$VARL" \> "$VAR2"] $VARI sorts after $VAR2
["$VAR1" \< "$VAR2"] $VAR1 sorts before $VAR2
[-e|fld|s|r|w]x "$VAR"]
-e File $VAR exists
—f|d File $VAR is a regular file / dir
-s File $VAR is not empty
-r|w|x File $VAR is read/write/executable

[$VARL -eq|ne|lt|gt|le|ge $VAR2]
Numeric comparisons
for i in $list; do cmd; done
$list is space-separated
2 Compiling and Makefile

CXX_COMPILER = g++ the compiler

CXX_FLAGS = -std=c++11 —pedantic-errors flags
-00 no optimization
-g add debugging symbols
-Wall enable all warnings
-c src.cpp compile to an object file, not linked

-0 output_file set the output file name
S@ the name of the target

$< the name of the first dependency
. the dependencies list
$(0BJS) access the Makefile variable 0BJS

.PHONY: clean make clean always run
$(CXX_COMPILER) $(CXX_FLAGS) $(0BJS) -o main
compile and link the objects
3 C++Basics
<cstdlib> (stdlib.h) and <ctime> (time.h)
srand(std: :time(nullptr)); // seed generator

rand() // [0, RAND_MAX]
rand() % (b - a + 1) // [0, b - al
rand() % (b - a + 1) +a // [a, b]

<cmath> (math.h)

double sqrt(double x);

double pow(double x, double y); // x"y

double fabs(double x); // absolute value
double ceil(double x); // round up
double floor(double x); // round down
CArrays

T arr[n]; // array of n elements

T arr[] = {1, 2, 3}; // array of 3 elements

T arr[3]1[2]; // arr of 3 arrays of 2 elements

arr[0]; // access an element of an array

/* == Take array das an argument == x/

ret_type func_name(T arr[], int size);

ret_type func_name(T arr[][2], int size);

/* == Linear Search == %/

int linSearch(T arr[], int size, T find) {
for (int i = 0; i < size; ++i)

if (arr[i] == find)
return i;
Y // avg 0(n) (half), worst 0(n) (all)
// add int startPos = 0; to search from startPos
/* == Selection Sort == %

/
void selSortAsc(T arr[], int size) {

for (int i = 0; 1 < size - 1; ++i) {
int minIndex = i;
for (int j =i + 1; j < size; ++j) {

if (arr[j] < arr[minIndex])
minIndex = j;
%F (minIndex ==
T temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;

i) continue;

}
}
char and <cctype> (ctype.h)
int isdigit(int c); // nonzero if is digit
int isalpha(int c); // nonzero if is alphabet
int isalnum(int c); // nonzero if is digit or alpha
int islower(int c); // nonzero if is lower case
int isupper(int c); // nonzero if is upper case
int tolower(int c); // ret c as lower if is upper
int toupper(int c); // ret c as upper if is lower

C++ Strings and <string>

std: :string str = "HKU ENGG1340 CompSc";

char ¢ = str[5]; / 'N'

str[10] = '3'; // "HKU ENGG1330 CompSc"
str = str + " is fun"; // Ok

str = "Hello" + " World"; // Error

/* == Functions == */

// read line from istream into string until delim
std: :getline(istream& in, string& s, char delim);

string: :length(); // length of string
string: :empty(); // true if empty
string: :substr(int pos, int len);

// find first occurrence of str from pos, miss>npos
string: :find(string str, int pos = 0);

// find last occurrence of str from pos, miss>npos
string: :rfind(string str, int pos = npos);
// insert str before the character at pos,
string: :insert(int pos, string str);

// erase len characters from pos, in place
string: :erase(int pos, int len);

// replace len chars from pos with str,

in place

in place

/* manipulators from <iomanip> */
std: :setprecision(2);
// with std::fixed or std::scientific:
// 3.14159 -> 3.14 or 3.14e+00
/ otherwise: 3.14159 -> 3.1
// no padding O without std::showpoint if

// not std::fixed or std::scientific
csetw(10); // set width to 10
rsetfill('='); // i1l with * (char)

Pointers and Dynamic Memory
int val = 5;
intx p = &val;

std:
std:

// p points to val

std::cout << *p; // output: 5

std::cout << p; // output: address of val
std::cout << &p; // output: address of p

p = nullptr; // p points to nothing
std::cout << #*p; // SIGSEGV

int* p = new int; // allocate memory for int
delete p; // free memory

intx p = new int[10]; // allocate memory for array
delete [] p; // free memory

*ptt; // increments POINTER
(xp)++; // increments VALUE

void swapByRef(int& a, int& b) {
int temp = a; a = b; b = temp;

void swapByPtr(int* a, int* b) {

int temp = *a; *a = *b; *b = temp;
}
Linked List

struct Node { int data; Nodex next; };
Node* head = nullptr; // empty list

Node* n = new Node; // create a new node
n->data = 10; n->next = nullptr; // initialize
head = // insert first node

Node* current = head;
while (current != nullptr) { // traverse the list
doSomething(); current = current->next;

void insertAtFront(Node*& head, Node* n) {
n->next = head; head = n;
}

void insertAtEnd(Node*& head, Nodex n) {
Node* current = head;

string: :replace(int pos, int len, string str); "

. if (current == nullptr) {

File 1/0 and <fstream> head = n: return:

std: :ifstream fin("input.txt"); 1 !

std: :ofstream fout("output.txt"); while (current >pext != nullptr)
fout.open("output.txt", std::ios::app); // append current = current->next;
fout.open(path_str.c_str()); // only support C—strs} current->next = n; n —> next = nullptr;
fout.close(); // close file

bool success = !fin.fail(); // or in.is_open(); : .

fout << "Hilh << std::endle 7 urite to file void deleteWithVal(Nodex& head, int val) {

fin >> str;
while (fin >> str);

// read one word from file
// read until EOF

<sstream>

std: :istringstream iss("1 2 3");

iss >> a >> b >> c; // read from string
Output Formatting by <iostream> and <iomanip>
Default floating-point: 6 sig. fig., or
scientific if too large/small.

/* manipulators from <tiostream> */

std: :showpoint; // always show point

// # of digits depends on std::setprecision
std: :noshowpoint; // unset std::showpoint
std::fixed; // fixed point notation (3.14)
std::scientific; // scientific notation (3.14e+00)
std::cout.unsetf(std::ios_base::floatfield);

// unset std::fixed and std::scientific

std::left; // left align
std::right; // right align (default with std::setw)

Node* current = head, * prev = nullptr;
while (current != nullptr) {
if (current->data val) {
if (prev == nullptr)
head = current->next;
else
prev->next =
delete current;
return,

current->next;

prev = current; current = current->next;

3

void reverseList(Node*& head) {
Node *current = head, #*prev = nullptr,
while (current != nullptr) {
next = current- >next;
current->next = prev
prev = current;
current = next

*next;

}

void deleteList(Nodex& head) {
Node* current = head, * next;
while (current != nullptr) {
next = current->next;
delete current;
current = next}
}
}

structin C++
struct Point {

int x, y, z; // member variables
Point(int x, int y, int z) // constructor
cox(x), yQy), z(2) {1}

double distance(const Point& p) {
return sqrt(pow(x - p.x, 2) +
pow(y - p.y, 2) +
pow(z - p.z, 2));
} // member function
bool ogerator<(const Point& p) {
urn x < p.x
|| (x == p.x &y < p.y)
[| (x == p.x &y == p.y & z < p.2);
} // operator overloading

}
Point p1(1, 2, 3), p2(4, 5, 6);
std::cout << "P1.X = " << pl.x << std::endl;

double dist = pl.distance(p2);

STL Iterators
Iterator templates defined in <iterator>, but STL
containers’ iterators are defined in their own
headers.
Iterator Types and Supported Operations
Forward iterators supports:
assignment, increment, dereference, equality;
Bidirectional iterators supports extra:
decrement;
Random access iterators supports extra:
addition, subtraction, inequality,
compound (it+=1), offset dereference (it[3])
STL Containers

<vector>
std::vector<int> v; // declaration
/* === Main Member Functions ——-—

v.push_back(1); // append to the eéd 0(1)
v.pop_back(); // remove last element 0(1)
v[il; // access element at i, 0(1)
v.size(); // size of vector, 0(1)

/* ——— Traverse with iterators --- */
vector<T>::iterator it; // random access iterator

for (it = v.begin(); it != v.end(); ++it) {
std::cout << *it << ", ",

}

<list>

std::list<int> 1; // declaration

/* ——— Main Member Functions ——— %/
1.push_back(1); // append to the end, 0(1)
l,push_front(z); // append to the front 0(1)
1.pop_back(); // remove last element, 0(1)
1.pop_front(); // remove first element, 0(1)
1.size(Q); // size of list, 0(1)
1.front(); // first element, 0(1)
1.back(Q); // last element, 0(1)

[* ——= Traverse with iterators —--

*/
:iterator it; // bidirectional iterator

list<T>:
// same as vector
<map>
std::map<int, int> m; // declaration
{{keyl, vall}, {key2, val2}}; // initialise
/* === Main Member Functions —-— */
mkey]; // access value with key, 0(log n)

// create if not exist
mlkey]l = 1; // set value with key, 0(log n)
m.count(key); // 1 if key exist, 0 otherwise
m.erase(key); // remove key, 0(log n)
m.size(); // size of map, 0(1)

/* ——— Traverse with iterators --- */

map<K, V>::iterator it; // bidirectional iterator
for (it = m.begin(); it != m.end(); ++it) {

std::cout << it->first << ": ";

std::cout << it->second << ",k ";
;* -—— Use with Custom Structs S as key —--- */
// S must have operator< defined
STL Algorithms and <algorithm>
std: :sort(RandomAccessIterator first,

RandomAccessIterator last);
// sort in range [first, last), in place

// 0(n log n) on average
std: :sort(it, it + n); // sort n elements
std: :sort(v.begin(), v.end()); // sort vector
// note that the last element is not included

Recursion (Binary Search)

int binSearch(int arr[], int 1, int r, int x) {
if (r >= 1) (
intmid =1+ (r -1V / 2;
if (arr[mid] == x) return mid;
if (arr[mid
return 1nSearch(arr 1, mid - 1, x);

return binSearch(arr, mid + 1, r, xX);

)
return -1; // not found

4 Clanguage
1/0 and Formatting in C (stdio.h)
int a; char line[100];
scanf("%d", &a);

printf("a = %d\n", a);
fgets(line,

// uses format specifiers
// uses format specifiers
sizeof(line), stdin); // reads a line
// NULL if fail

Format Specifiers:
%d int

%f, %Lf float, double
%.nf float, n decimal places
%9 float, without trailing 0
%C char
%(n)s string (of n characters, printf() only)

String Functions (string.h)
strcpy(char[] s1,
strcat(char[] sl, const char[] s2); // s1 = sl + s2
strcmp(const char[] sl, const char[] s2);

// -ve if sl < s2; 0 if s1 = s2; +ve if sl > s2
strlen(const char[] s); // length of s
Dynamic Memory Allocation (stdlib. h)

/* ——— Allocate memory —-— */

void* malloc(int size); // allocate size bytes
(T*) malloc(n * sizeof(T)); // = new T[n]

/* ——— Release memory ---— %/
void free(void* ptr); // =
struct and typedef

struct point {int x, y;};

struct point pl;

typedef struct point Point;
Point p2; // Point is alias for struct point
*% C-structs cannot have member

functions/constructors.
Appendlx Regular Expressions

Match the beginning of a line

delete ptr

$ Match the end of a line
. Match any single character
? Match 0 or 1 of the previous token
* Match O or more of the previous token
+ Match 1 or more of the previous token
[abc] Match any character in the brackets

[a-zA-Z] Match any character in the range
[“abc] Match any character not in the brackets
(p){n} Match the pattern p for n times
(p)in,} Match the pattern p for [n, o) times
(p){n,m} Match the pattern p for [n, m] times
ab|cd Match either ab or cd

\
\w, \W
\d, \D
\s, \s
\n

const char[] s2); // copy s2 to si

Escape spectial characters

Match any word/non-word character
Match any digit/non-digit character
Match any space/non-space character
Match a newline

