CCST9064 Group L — Video Essay
Individual Research Log

Student Information

Name: SHING, Zhan Ho Jacob Group Number: L
Student ID: 3036228892 Topic: Somatic Gene Therapy

1 Research Approach and Methodology

For this group project, I am not responsible for the research part. However, for video production purposes,
research was still an essential part to obtain contents and ensure my content’s accuracy.

The sources that I have consulted, as will be listed in the later sections, are mainly from credible scientific
database — the Protein Data Bank (PDB) — and educational videos from reputable channels on YouTube. The
research methodology mainly involves keyword searching within PDB and YouTube. The keywords are taken
from the video script written by the scriptwriters and from the storyboard.

2 Key Sources Consulted

As our video essay is about highly specialised scientific topic — somatic gene therapy — there are many credible
sources that can be used to explain the concepts clearly visually. Using existing materials also saves the
production time and reduces the need for creating complicated animations de movo. I have researched and
collected the following materials:

2.1 3D Models of Protein Structures

Many of the protein structures are already determined through experimental methods and are available in the

Protein Data Bank (PDB, https://www.rcsb.org/). Further, for dynamically showing the structures, the

molecular data downloaded from PDB can be fed into the software ChimeraX (https://www.cgl.ucsf.edu/

chimerax/), colour-coded, and exported as a 3D object file, that can be further animated with After Effects.
In our video essay, the following protein structures were (adapted and) used:

e [1APL] Crystal Structure of a MAT-a2 Homeodomain-Operator Complex Suggests a General Model for
Homeodomain-DNA Interactions — the double helix DNA structure was extracted for the opening scene.

e [2HHB] The Crystal Structure of Human Deozyhaemoglobin at 1.74 Angstroms Resolution — the normal
human haemoglobin structure, used along with 2HBS.

e [2HBS] The High Resolution Crystal Structure of Deoxyhemoglobin S — the sickle-cell haemoglobin
structure, used along with 2HHB to illustrate the molecular basis of sickle-cell anaemia.

e [3FSN] Crystal Structure of RPE65 at 2.1 Angstrom Resolution — to illustrate the protein involved in
gene therapy for Leber’s Congenital Amaurosis (LCA).

e [4QQ6]1 Crystal Structure of tudor domain of SMN1 in complex with a small organic molecule — to
illustrate the protein involved in gene therapy for Spinal Muscular Atrophy (SMA).

Apart from the models provided by PDB, there was also one double helix DNA model created by the software
ChimeraX, using a randomly generated DNA sequence, for animating the rotating double helix DNA in the
video.

2.2 Video/Animation Clips

To illustrate the complex biological processes involved in somatic gene therapy, I have searched for existing
video/animation clips that can be used directly or adapted for our video essay. The following clips were used:

e 3D Animation of a Clogged Blood Vessel Due to a Sickle Cell Disease (https://youtu.be/BmnfR-D8ewE)
— to illustrate the effect of sickle-cell anaemia blocking blood vessels.

e Gene Therapy Basics (2022 Update) (https://www.youtube.com/watch?v=kAtd9X29SdQ) — to illustrate
“delivering a healthy gene into a cell as compensation”.

https://www.rcsb.org/
https://www.cgl.ucsf.edu/chimerax/
https://www.cgl.ucsf.edu/chimerax/
https://www.rcsb.org/structure/1APL
https://www.rcsb.org/structure/2HHB
https://www.rcsb.org/structure/2HBS
https://www.rcsb.org/structure/3FSN
https://www.rcsb.org/structure/4QQ6
https://youtu.be/BmnfR-D8ewE
https://www.youtube.com/watch?v=kAtd9X29SdQ

e Breast Cancer (https://vimeo.com/871843858) — to illustrate the idea of uncontrolled cell growth in
cancer.

e Introduction to CRISPR-Cas9 Genome Editing (https://www.youtube.com/watch?v=iEA-NleJoqY) —
to illustrate the CRISPR-Cas9 gene editing mechanism.

e A Look at How CAR-T Cell Therapy Works (https://www.youtube.com/watch?v=mXADrg_ckhI) — to
illustrate the CAR-T cell therapy mechanism.

3 Major Insights and Discovery

As opposed to my original expectation that all of the protein structures in our body can be found on PDB
as long as their genetic sequences are known, during the research process, I have discovered this to be false.
Many of the protein structures cannot be found on PDB. Later investigations on this issue revealed that the
structure of a protein cannot be determined simply through mathematical or computer simulations even if the
exact amino acid chain is known. This is because protein folding is a complex process and is affected by many
factors.

The truth is, many of the existing protein structures in PDB, except for those simple peptides, are determined
through experimental methods. This can be verified because many of the PDB entries are actually a protein
in complex with other molecules, such as ligands, inhibitors, or is a protein dissolved in a solvent, not the pure
protein alone.

4 Personal Contribution to the Project

My responsibilities in this group project is to realise the storyboard designed by Jialiu Xu by assembling the
video clips, animations, voiceovers together into the final video.

4.1 My Workflow for Contributing to the Video Essay

After receiving the storyboard from Jialiu Xu, I started creating the animation clips that were implementable
using Python with the Manim library. The more complex animations, such as the sickle cell anaemia animations,
were looked up online and directly used in our video with proper in-video citation. Those videos were not created
because the complexity is beyond the requirement of this course.

With Manim, a total of 26 scenes were created (of which only 25 were used as one of them was no longer
applicable after some modifications). Some of the designs in the original storyboard were not adopted due to
technical limitations and time constraints.

As for the protein structure models, I fetched them from PDB into ChimeraX. With the built-in functions of
ChimeraX, I colour-coded the structures (mainly by chain) and exported them as .glb 3D object files. These
files were then imported into Adobe After Effects for simple animating (mainly rotation and zooming).

The animation clips, B-roll footages, 3D animations, and voiceover recordings were assembled together in
Adobe Premiere Pro. Some simple video effects, such as zooming in/out, panning, and fading transitions were
also applied in Premiere Pro to enhance the visual experience.

4.2 Animations Created with Python

Various animation clips were created using Python with the library Manim. The source codes are attached at
the end of this document. For the sake of academic integrity, it is declared that large language models were
involved in writing the following code files. The use of LLMs was mainly for handling complex mathematical
expressions to save up time for actually producing the animations.

4.3 Leadership Role in the Group

Initially, two members were assigned the role as video production. This is impractical as the video editing
software cannot be used collaboratively and only one person can work on the project files at a time. Uploading
the project files to a cloud storage for sharing was also not an option as the files can get very large (several
gigabytes) and the upload/download time would be too long.

Therefore, for easier task delegation, I took the initiative to offer the other video production member to
focus on creating the storyboard from the script. This is effective since I, as a Computer Science student, find

https://vimeo.com/871843858
https://www.youtube.com/watch?v=iEA-NleJoqY
https://www.youtube.com/watch?v=mXADrg_ckhI

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

it difficult to come up with creative visual designs from scratch on top of the script. However, with my previous
experience in video editing, I can effectively realise the storyboard into the final video. Therefore, we agreed on
this division of labour, which greatly improved our productivity and was a successful collaboration.

5 Reflection on Learning

5.1 Understanding of Genetics

As T was previously enrolled as an MBBS student, I already have some foundational knowledge of genetics
through trainings from the TASM block. This has equipped me with the necessary background and skills to
understand the complex concepts involved in somatic gene therapy. On the science side, through this project, I
have additional knowledge about the specific applications of somatic gene therapy, such as Luxturna for LCA,
Nusinersen for SMA, etc. On the moral side, I have also learned about more ethical considerations from more
aspects, such as public opinion and fair access to treatment.

5.2 Skills Acquired

By working on this project, I have deepened my skills in professional video production. I have also learned new
skills in 3D molecular visualisation and animation using ChimeraX and Adobe After Effects. Further, in 2D
animation creation, I have improved my skills in using Python with the Manim library to create mathematical
and scientific animations programmatically.

Annex: Python Source Codes for Creating Animations

intro_scenes.py

This file contains code for creating animations used in the introduction section of the video.

from manim import *
INTRODUCTION SCENES

class Scenel_TitleText(Scene):
"""Opening shot: Somatic Gene Therapy
def construct(self):
Text animation
text = Tex("Science Fiction'", font_size=48, color=GREEN)
self.play (Write(text))
self.wait (2)

mwin

newText = Tex("Somatic Gene Therapy", font_size=48, color=RED)
self.play(Transform(text, newText))
self .wait (3)

self.play(FadeOut (text))

class Scene2_FixingGeneErrorsInACell(Scene):
""""Scene: Fizing Gene Errors in a Cell"""
def construct(self):
Create cell (outer circle) with background
cell = Circle(radius=2.5, color=BLUE, stroke_width=3, fill_color=BLUE, fill_opacity=0.3)

Create nucleus (inner circle) - smaller size with background
nucleus = Circle(radius=0.9, color=PURPLE, stroke_width=3, fill_color=PURPLE,
— fill_opacity=0.35)

Create problematic DNA (red double heliz)
Simple representation using two intertwined curves
dna_strandl = ParametricFunction(

lambda t: np.array([

32

33

34

35

36

37

39

40

41

42

43

44

45

46

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

0.3 * np.cos(2 * PI * t),
0.8 *t - 0.4,
0
D,
t_range=[0, 1],
color=RED
)
dna_strand2 = ParametricFunction(
lambda t: np.array([
-0.3 * np.cos(2 * PI * t),
0.8 *t - 0.4,
0
D,
t_range=[0, 1],
color=RED
)

problematic_dna = VGroup(dna_strandl, dna_strand?2)

Create text labels

cell_label = Tex("$\\textbf{Cell}$", font_size=28, color=BLUE).next_to(cell, DOWN, buff=0.3)
problematic_dna_label = Tex("\\textbf{Problematic \\\\DNA}", font_size=24,

« color=RED) .next_to(problematic_dna, RIGHT, buff=0.7)

Display cell, nucleus, problematic DNA, and labels at the start
self.add(cell, nucleus, problematic_dna, cell_label, problematic_dna_label)
self.wait (2)

Create fized DNA (green double helixz)
fixed_strandl = ParametricFunction(
lambda t: np.array([
0.3 * np.cos(2 * PI * t),
0.8 xt - 0.4,
0
D,
t_range=[0, 1],
color=GREEN
)
fixed_strand2 = ParametricFunction(
lambda t: np.array([
-0.3 * np.cos(2 * PI * t),
0.8 xt - 0.4,
0
D,
t_range=[0, 1],
color=GREEN
)
fixed_dna = VGroup(fixed_strandl, fixed_strand2)

Create fized DNA label
fixed_dna_label = Tex("\\textbf{Fixed \\\\DNA}", font_size=24, color=GREEN) .next_to(fixed_dna,
< RIGHT, buff=1.0)

Flash effect
flash = Flash(problematic_dna.get_center(), color=YELLOW, flash_radius=0.8)

Morph DNA to green with pop effect and morph the label
self.play(
Transform(problematic_dna, fixed_dna),
Transform(problematic_dna_label, fixed_dna_label),
flash,
problematic_dna.animate.scale(1.3).set_color (GREEN)
)
self.play(problematic_dna.animate.scale(1/1.3))
self.wait (2)

94

95

96

98

99

101

102

103

104

class Scene3_NoPassing(Scene):
""hiScene: No Passing"""
def construct(self):
Start with the ending status of Scene 2
cell = Circle(radius=2.5, color=BLUE, stroke_width=3, fill_color=BLUE, fill_opacity=0.3)
nucleus = Circle(radius=0.9, color=PURPLE, stroke_width=3, fill_color=PURPLE,
— fill_opacity=0.35)

Fized DNA (green double heliz)
dna_strandl = ParametricFunction(
lambda t: np.array([
0.3 * np.cos(2 * PI * t),
0.8 xt - 0.4,
0
D,
t_range=[0, 1],
color=GREEN
)
dna_strand2 = ParametricFunction(
lambda t: np.array([
-0.3 * np.cos(2 * PI * t),
0.8 xt - 0.4,
0
D,
t_range=[0, 1],
color=GREEN
)
fixed_dna = VGroup(dna_strandl, dna_strand2)

Create labels

cell_label = Tex("$\\textbf{Cell}$", font_size=28, color=BLUE).next_to(cell, DOWN, buff=0.3)
fixed_dna_label = Tex("\\textbf{Fixed \\\\DNA}", font_size=24, color=GREEN) .next_to(fixed_dna,
— RIGHT, buff=1.0)

Group the cell components
cell_group = VGroup(cell, nucleus, fixed_dna)

Add everything at the start
self.add(cell_group, cell_label, fixed_dna_label)

Fade out the text labels
self.play(FadeOut (cell_label), FadeOut(fixed_dna_label), run_time=0.25)

Create stick figures
Parent (taller, on the left)
parent_head = Circle(radius=0.3, color=WHITE, stroke_width=2)
parent_body = Line(start=0RIGIN, end=DOWN * 1.5, color=WHITE, stroke_width=2)
parent_arms = Line(start=LEFT * 0.5, end=RIGHT * 0.5, color=WHITE, stroke_width=2)
parent_legs = VGroup(
Line(start=0RIGIN, end=DOWN * 0.8 + LEFT #* 0.4, color=WHITE, stroke_width=2),
Line(start=0RIGIN, end=DOWN * 0.8 + RIGHT * 0.4, color=WHITE, stroke_width=2)

parent = VGroup(parent_head, parent_body, parent_arms, parent_legs)
parent_head.next_to(parent_body.get_start(), UP, buff=0.1)
parent_arms.next_to(parent_body.get_start(), DOWN, buff=0.3)
parent_legs.next_to(parent_body.get_end(), DOWN, buff=0)

parent.move_to(LEFT * 3 + DOWN * 0.5)
parent_label = Tex("\\textbf{Parent}", font_size=24, color=WHITE) .next_to(parent, DOWN,
— buff=0.3)

Child (shorter, on the right)

155

156

157

158

159

160

162

163

164

165

166

167

168

169

171

172

173

174

175

176

177

178

180

181

182

183

185

186

187

189

190

191

192

194

195

196

197

199

200

201

202

204

205

206

207

208

child_head = Circle(radius=0.25, color=WHITE, stroke_width=2)
child_body = Line(start=0RIGIN, end=DOWN * 1.0, color=WHITE, stroke_width=2)
child_arms = Line(start=LEFT * 0.4, end=RIGHT * 0.4, color=WHITE, stroke_width=2)
child_legs = VGroup(
Line(start=0RIGIN, end=DOWN * 0.6 + LEFT * 0.3, color=WHITE, stroke_width=2),
Line(start=0RIGIN, end=DOWN * 0.6 + RIGHT * 0.3, color=WHITE, stroke_width=2)

child = VGroup(child_head, child_body, child_arms, child_legs)
child_head.next_to(child_body.get_start(), UP, buff=0.1)
child_arms.next_to(child_body.get_start(), DOWN, buff=0.2)
child_legs.next_to(child_body.get_end(), DOWN, buff=0)

child.move_to(RIGHT * 3 + DOWN * 0.3)
child_label = Tex("\\textbf{Child}", font_size=24, color=WHITE) .next_to(child, DOWN, buff=0.3)

Fade in stick figures and their labels
self.play(
FadeIn(parent), FadeIn(parent_label),
FadeIn(child), FadeIn(child_label),
cell_group.animate.scale(0.3) .shift(parent.get_center() + RIGHT * 1.2),
run_time=1

Move cell next to parent
self.play(cell_group.animate.move_to(parent.get_center() + RIGHT * 1.2), run_time=0.5)
self.wait (0.25)

Draw arrow from left to right
arrow = Arrow(
start=LEFT * 1.5,
end=RIGHT * 1.5,
color=YELLOW,
buff=0,
stroke_width=6
) .move_to(DOWN * 0.5)
self.play(Create(arrow), run_time=0.25)

Cell attempts to move along arrow but ts stopped by red cross

Create Ted cross in the middle

cross_linel = Line(start=UP * 0.3 + LEFT * 0.3, end=DOWN * 0.3 + RIGHT * 0.3, color=RED,
«— stroke_width=8)

cross_line2 = Line(start=UP * 0.3 + RIGHT * 0.3, end=DOWN * 0.3 + LEFT * 0.3, color=RED,
< stroke_width=8)

red_cross = VGroup(cross_linel, cross_line2).move_to(DOWN * 0.5)

Animate cell moving and being stopped

self.play(
cell_group.animate.move_to(cell_group.get_center() + RIGHT * 1.5),
run_time=1,
rate_func=rush_into

Show red cross appearing and cell bouncing back slightly
self.play(Create(red_cross), cell_group.animate.shift(LEFT * 0.3), run_time=0.5)
self .wait(2)

application_eyes.py

This file contains code for creating animations about gene therapy applications for eye diseases, specifically
Luxturna treatment for Leber’s Congenital Amaurosis (LCA).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

from manim import *
APPLICATION - EYES SCENES

class Scene4_ChapteriTitle(Scene):
"""Chapter Title: Application - Eyes
def construct(self):
Text animation
chapter = Tex("{\\scshape\\bfseries CHAPTER I}", font_size=50, color=YELLOW)
title = Tex("{\\bfseries Genetic Blindness}'", font_size=64, color=YELLOW)
separator = Line(start=LEFT * 3, end=RIGHT * 3, color=0RANGE, stroke_width=4)

mwn

chapter.move_to (UP * 0.75)
title.move_to(DOWN * 0.75)
separator.move_to (ORIGIN)

self.play(
Write(chapter, run_time=1.5),
Create(separator, run_time=1.5),
Write(title, run_time=1.5)

self.wait (3)

class Scene5_LuxturnaAndLCATitle(Scene):
"mnTytle: Luxzturna and LCA"""
def construct(self):
Text animation
title = Tex("{\\bfseries Luxturnal}'", font_size=64, color=BLUE)
subtitle = Tex("A gene therapy for", font_size=36)
disease = Tex("{\\bfseries Leber Congenital Amaurosis (LCA)}", font_size=40, color=RED)

title.move_to(UP * 1)
subtitle.move_to(DOWN * 0.2)
disease.move_to(DOWN * 0.8)

self.play(Write(title, run_time=0.75))
self.wait (3)
self.play(Write(subtitle), Write(disease), run_time=0.75)

self.wait (3)

class Scene6_LuxturnaPacking(Scene):
"""Luzturna Packing Animation"""
def construct(self):
scene_title = Tex("{\\bfseries Luxturna Mechanism}'", font_size=48, color=YELLOW)
scene_title.move_to(UP * 3)
self.play(Write(scene_title), run_time=1)
self.wait (0.5)

1. Create cDNA (green single strand) on the left
cdna = ParametricFunction(
lambda t: np.array([
0.2 * np.sin(4 * PI * t),
2t -1,
0
D,
t_range=[0, 1],
color=GREEN,
stroke_width=6

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

107

108

109

112

113

114

116

117

118

119

121
122

123

cdna_labell
cdna_label?2
cdna_labels

Tex("\\textbf{cDNA}", font_size=28, color=GREEN)

Tex ("\\textbf{(functional RPE65)}", font_size=24, color=GREEN)
VGroup(cdna_labell, cdna_label2).arrange(DOWN, buff=0.2)

cdna.move_to (LEFT * 4)
cdna_labels.next_to(cdna, DOWN, buff=0.5)

2. Create AAV wiral wvector (purple capsid) on the right

Represent as a hewzagonal/circular capsid with inner space

aav_capsid = RegularPolygon(n=6, radius=1.2, color=PURPLE, stroke_width=4, fill_color=PURPLE,

— fill_opacity=0.2)

Add spike proteins around the capsid

spike_positions = [
UP * 1.2,
UP * 0.6 + RIGHT * 1.0,

DOWN

DOWN
UP *

0

* 0.6 + RIGHT * 1.0,
DOWN * 1.2,

* 0.6 + LEFT * 1.0,

0.6 + LEFT * 1.0

spikes = VGroup()
for pos in spike_positions:

spike = Triangle(color=PURPLE, fill_color=PURPLE, fill_opacity=0.8)

spike.scale(0.15)
spike.move_to (pos)

Point spike outward from center
angle = np.arctan2(pos[1], pos[01)
spike.rotate(angle + PI/2)
spikes.add(spike)

aav_vector = VGroup(aav_capsid, spikes)

aav_label = Tex("\\textbf{AAV therapeutic\\\\vector}", font_size=28, color=PURPLE)

aav_vector.move_to(RIGHT * 4)
aav_label.next_to(aav_vector, DOWN, buff=0.5)

Display both components

self.play(

Create(cdna),
Write(cdna_labels),
run_time=0.7

)
self.wait(1.5)
self.play(

Create(aav_vector),

Write(aav_

label),

run_time=0.7

)
self.wait (2)

3. Move cDNA into the viral vector
Scale down cDNA to fit inside

self.play(

cdna.animate.scale(0.4) .move_to(aav_vector.get_center()),
FadeOut (cdna_labels),

run_time=1
)
self.wait (0.5)

Group the combination

aav_with_cdna

= VGroup (aav_vector, cdna)

126

127

129

130

131

133

134

135

136

137

1

w0

8

139

140

179

180

181

182

183

184

185

186

188

4. Zoom and move to center, transform label
aav_new_label = Tex("\\textbf{AAV2 serotypel}", font_size=32, color=PURPLE)
aav_new_label.move_to (DOWN * 2.5)

self.play(
aav_with_cdna.animate.scale(1.5) .move_to(ORIGIN),
Transform(aav_label, aav_new_label),
run_time=1

)

self.wait (3)

class Scene7_Luxturnalnjection(Scene):
""Luzturna Injection Animation'""
def construct(self):
scene_title = Tex("{\\bfseries Luxturna Mechanism}'", font_size=48, color=YELLOW)
scene_title.move_to(UP * 3)
self.add(scene_title)

1. Start from where Scene 6 ended - recreate the AAV2 with cDNA at center
aav_capsid = RegularPolygon(n=6, radius=1.2, color=PURPLE, stroke_width=4, fill_color=PURPLE,
— fill_opacity=0.2)

spike_positions = [
UP * 1.2,
UP * 0.6 + RIGHT * 1.0,
DOWN * 0.6 + RIGHT * 1.0,
DOWN * 1.2,
DOWN * 0.6 + LEFT * 1.0,
UP * 0.6 + LEFT * 1.0

spikes = VGroup()
for pos in spike_positions:
spike = Triangle(color=PURPLE, fill_color=PURPLE, fill_opacity=0.8)
spike.scale(0.15)
spike.move_to (pos)
angle = np.arctan2(pos[1], pos[0])
spike.rotate(angle + PI/2)
spikes.add(spike)

aav_vector = VGroup(aav_capsid, spikes)

cdna = ParametricFunction(
lambda t: np.array([
0.2 * np.sin(4 * PI * t),
2%t -1,
0
D,
t_range=[0, 1],
color=GREEN,
stroke_width=6
) .scale(0.4)

aav_with_cdna = VGroup(aav_vector, cdna).scale(l.5).move_to(ORIGIN)
aav_label = Tex("\\textbf{AAV2 serotypel}", font_size=32, color=PURPLE).move_to(DOWN * 2.5)

self.add(aav_with_cdna, aav_label)

2. Zoom out AAVZ2 and move to left, create impatired cell on right-center
self.play(

aav_with_cdna.animate.scale(0.5) .move_to(LEFT * 4),

FadeOut (aav_label),

run_time=1

189

190

191

192

193

194

195

196

197

198

199

201

202

203

204

205

206

207

208

211

212

213

215

216

217

220

221

222

224

225

226

229

230

231

233

234

235

237

238

239

240

242

243

244

245

247

248

249

250

Create cell with impaired DNA (red) in nucleus
cell = Circle(radius=2, color=BLUE, stroke_width=3, fill_color=BLUE, fill_opacity=0.1)
stroke_width=3, fill_color=PURPLE,

nucleus = Circle(radius=0.8, color=PURPLE,
— fill_opacity=0.15)

Impaired DNA (red)
impaired_dna = ParametricFunction(
lambda t: np.array([
0.2 * np.sin(4 * PI * t),
0.6 * t - 0.3,
0
D,
t_range=[0, 1],
color=RED,
stroke_width=4

cell_group = VGroup(cell, nucleus, impaired_dna)

cell_group.move_to(RIGHT * 1.5)

Add cell label for impaired state

cell_label = Tex("\\textbf{Cell (impaired DNA)1}", font_size=32, color=RED)

cell_label.next_to(cell_group, DOWN, buff=0.3)

self .play(Create(cell_group), Write(cell_label), run_time=1)

3. Vector moves towards cell and releases cDNA

self.play(

aav_with_cdna.animate.move_to(cell.get_left() + LEFT * 0.5),

run_time=1.2

Extract and scale up the cDNA for delivery

cdna_delivery = cdna.copy().scale(2)

Create fized cell label

fixed_cell_label = Tex("\\textbf{Cell (fixed DNA)}", font_size=32, color=GREEN)
buff=0.3)

fixed_cell_label.next_to(cell_group, DOWN,

self.play(

cdna_delivery.animate.move_to(nucleus.get_center()),

impaired_dna.animate.set_color (GREEN),

Transform(cell_label, fixed_cell_label),

run_time=1.5

Remove the delivery cDNA and keep the transformed one

self .remove (cdna_delivery)

4. Vector fades out, cell moves to center and zooms slightly
self.play(FadeOut (aav_with_cdna), run_time=0.5)

self.play(

cell_group.animate.scale(0.9) .move_to(ORIGIN),
cell_label.animate.next_to(ORIGIN + DOWN * 2, DOWN, buff=0),

run_time=1

5. Cell produces functional retinoid isomerase (blue hezagons)
enzyme_label = Tex("\\textbf{Functional Retinoid\\\\Isomerase (RPE65)}", font_size=32,

— color=BLUE)
enzyme_label.move_to(DOWN * 3)

10

251

252

253

254

255

256

258

259

260

261

262

263

264

265

267

268

269

270

271

272

273

274

276

277

278

279

281

282

283

285

286

287

288

290

291

292

293

295

2

©

6

297

298

299

300

301

302

304

305

306

307

308

309

310
311

312

Create enzymes with fixzed random positions
enzyme_positions = [
UP * 2 + LEFT * 5,

UP * 1.5 + RIGHT * 5.5,
UP * 0.5 + LEFT * 6,

DOWN * 0.8 + RIGHT * 6,
DOWN * 2 + LEFT * 5.5,
DOWN * 2.5 + RIGHT * 4.5,
UP * 2.8 + LEFT * 2,

UP * 2.5 + RIGHT * 3,
DOWN * 3 + LEFT * 3,

DOWN * 2.8 + RIGHT * 2.5,
UP * 1 + LEFT * 3.5,

DOWN * 1.5 + LEFT * 4

enzymes = VGroup()
animations = []

for i, pos in enumerate(enzyme_positions):
enzyme = RegularPolygon(n=6, radius=0.15, color=BLUE, fill_color=BLUE, fill_opacity=0.7)
enzyme.move_to(cell.get_center())
enzymes . add (enzyme)

Stagger the animations slightly
animations.append(
AnimationGroup (
enzyme.animate.move_to(pos),
lag_ratio=0.1

self.add (enzymes)

Animate enzymes leaving the cell
self.play(
LaggedStart (*[enzyme.animate.move_to(pos) for enzyme, pos in zip(enzymes,
— enzyme_positions)],
lag_ratio=0.08),
Write(enzyme_label),
run_time=2.8

self.wait (2)

class Scene8_ClinicalResultsEyes(Scene):
"nclenical Results Text"""
def construct(self):
Title
title = Tex("{\\bfseries Clinical Results}", font_size=56, color=YELLQOW)
title.move_to(UP * 2.5)

Result statements
resultl = Tex("$\\bullet$ Significant improvements in retinal function", font_size=32)

result2 = Tex("$\\bullet$ Increased light sensitivity", font_size=32)
result3 = Tex("$\\bullet$ Enhanced pupillary responses", font_size=32)
result4 = Tex("$\\bullet$ Improved vision in dim environments", font_size=32, color=GREEN)

results = VGroup(resultl, result2, result3, result4).arrange(DOWN, buff=0.5,
— aligned_edge=LEFT)
results.move_to(DOWN * 0.5)

Animate title

11

313

314

315

316

317

318

320

self
self

.play(Write(title), run_time=1)
.wait(0.5)

Animate results appearing one by one

self
self
self
self

.play(FadeIn(resultl, shift=UP * 0.3),
.wait (0.3)
.play(FadeIn(result2, shift=UP * 0.3),
.wait (0.3)

run_time=0.8)

run_time=0.8)

321 self.play(FadeIn(result3, shift=UP * 0.3), run_time=0.8)
322 self.wait (0.3)

323 self.play(FadeIn(result4, shift=UP * 0.3), run_time=0.8)
324

325 self.wait (3)

application_blood_disorder.py

This file contains code for creating animations about gene therapy applications for blood disorders, specifically

CRISPR treatment for sickle cell disease.

from manim import *

BLOOD DISORDER APPLICATION SCENES

class Scene9_Chapter2Title(Scene):

"""Chapter 2 Title: Gene Therapy for Blood Disorders

mnn

7 def construct(self):

8 # Text animation

9 chapter = Tex("{\\scshape\\bfseries CHAPTER II}", font_size=50, color=YELLOW)
10 title = Tex("{\\bfseries Blood Disorders}", font_size=64, color=YELLOW)

11 separator = Line(start=LEFT * 3, end=RIGHT #* 3, color=0RANGE, stroke_width=4)
12

13 chapter.move_to(UP * 0.75)

14 title.move_to(DOWN * 0.75)

15 separator.move_to (ORIGIN)

16

17 self.play(

18 Write(chapter, run_time=1.5),

19 Create(separator, run_time=1.5),

20 Write(title, run_time=1.5)

21)

22

23 self.wait (3)

24
25 class ScenelO_SickleCellDiseaseTitle(Scene):

26 "miSeckle Cell Disease Title Scene""”

27 def construct(self):

28 # Text animation

29 title = Tex("{\\bfseries Sickle Cell Diseasel}", font_size=72, color=YELLOW)
30

31 self.play(Write(title, run_time=1))

32

33 self.wait (3)

34
35 class Scenell_CRISPRTreatment (Scene):

36 ""MCRISPR-Cas9 Treatment for Sickle Cell Disease"""

37 def construct(self):

38 # Part 1: Show BCL11A gene suppressing fetal hemoglobin

39 bcllla_gene = Rectangle(width=2, height=0.8, color=RED, fill_color=RED, fill_opacity=0.3)
40 bclila_label = Tex("\\textbf{BCL11A\\\\genel}", font_size=24, color=RED)

41 bclila_label.next_to(bcllla_gene, UP, buff=0.3)

42

43 bclila_group = VGroup(bcllila_gene, bcllla_label)

12

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

105

106

bcllla_group.move_to(UP * 2 + LEFT * 3)

Fetal hemoglobin (suppressed, shown as small gray circles)
fetal_hb_suppressed = VGroup (*[
Circle(radius=0.15, color=GRAY, fill_color=GRAY, fill_opacity=0.4)
for _ in range(3)
1) .arrange (RIGHT, buff=0.3)
fetal_hb_suppressed.move_to(DOWN * 1 + LEFT #* 3)

fetal_label = Tex("\\textbf{Fetal Hb\\\\(suppressed)}", font_size=20, color=GRAY)
fetal_label.next_to(fetal_hb_suppressed, DOWN, buff=0.3)

Suppression arrow

suppression_arrow = Arrow(
start=bcllla_gene.get_bottom(),
end=fetal_hb_suppressed.get_top(),
color=RED,
stroke_width=6

)

self.play(
Create(bcllla_group),
Create(suppression_arrow) ,
Create(fetal_hb_suppressed),
Write(fetal_label),
run_time=1.5

)

self.wait (1)

Part 2: Show CRISPR-Cas9 coming in to edit BCL114

crispr_cas9 = VGroup(
Rectangle (width=1.5, height=0.6, color=BLUE, fill_color=BLUE, fill_opacity=0.5),
Tex("\\textbf{CRISPR-\\\\Cas9}", font_size=20, color=BLUE)

)

crispr_cas9[1] .move_to(crispr_cas9[0].get_center())

crispr_cas9.move_to(UP * 2 + RIGHT * 2)

self.play(Create(crispr_cas9), run_time=1)
self.wait(0.5)

CRISPR moves to BCL11A
self.play(crispr_cas9.animate.move_to(bcllla_gene.get_center()), run_time=1.5)

Flash effect showing gene editing
flash = Flash(bclila_gene.get_center(), color=YELLOW, flash_radius=1)
self.play(flash)

BCL11A becomes deactivated (crossed out)

cross_linel = Line(
start=bcllla_gene.get_corner(UL),
end=bclila_gene.get_corner(DR),
color=YELLOW,
stroke_width=6

)

cross_line2 = Line(
start=bcllla_gene.get_corner(UR),
end=bcllla_gene.get_corner(DL),
color=YELLOW,
stroke_width=6

deactivated_label = Tex("\\textbf{BCL11A\\\\(deactivated)}", font_size=24, color=GRAY)
deactivated_label.move_to(bcllla_label.get_center())

13

107

108

109

110

111

112

115
116

117

119

120

121

124

125

126

128

129

130

132

133

134

135

137

138

139

142

143

144

146

147

148

150

151

152

153

155

156

157

159
160

161

self.play(
Create(cross_linel),
Create(cross_line2),
Transform(bclila_label, deactivated_label),
FadeQOut (crispr_cas9),
suppression_arrow.animate.set_color (GRAY) .set_opacity(0.3),
run_time=1.5

self.play(
Transform(fetal_hb_suppressed, fetal_hb_active),
Transform(fetal_label, active_label),
run_time=1.5

2o

* N ¥ ¥ O —
N + = O o1 ol

self.wait (1)

Part 3: Fetal hemoglobin production resumes
fetal_hb_active = VGroup (*[

Circle(radius=0.2, color=GREEN, fill_color=GREEN, fill_opacity=0.7)
_ in range(6)
1) .arrange_in_grid(rows=2, cols=3, buff=0.3)
fetal_hb_active.move_to(fetal_hb_suppressed.get_center() + DOWN * 0.5)

active_label = Tex("\\textbf{Fetal Hb\\\\(high-level)}", font_size=20, color=GREEN)
active_label.next_to(fetal_hb_active, DOWN, buff=0.3)

self.wait (1)

Part 4: Show effect on red blood cells

Fade everything out

self.play(
FadeOut (bclila_group),
FadeOut (cross_linel),
FadeOut (cross_line2),
FadeOut (suppression_arrow),
FadeOut (fetal_hb_suppressed),
FadeOut (fetal_label),
run_time=1

1. Create sickle cells and normal hemoglobin scattered across screen
Sickle cells (red crescents)

sickle_positions
+ LEFT * 4,

+ LEFT * 1,

+ LEFT * 5,

.5 + LEFT * 2.5,
.5 + LEFT * 5.5,

5

sickle_cells = VGroup()
for pos in sickle_positions:

+ LEFT * 0.5,

arcl = Arc(radius=0.3, angle=PI, color=RED, stroke_width=3, fill_color=RED,
— fill_opacity=0.4)

arc2 = Arc(radius=0.25, angle=-PI, color=RED, stroke_width=3, fill_color=RED,
— fill_opacity=0.4) .next_to(arcl, RIGHT, buff=0)

sickle = VGroup(arcl, arc2).rotate(PI/4)

sickle.move_to(pos)

sickle_cells.add(sickle)

Normal hemoglobin (green circles)
normal_hb_positions = [

14

169

170

171

172

173

174

176

177

178

179

181

182

183

184

185

186

187

188

190

191

192

193

195

196

197

198

200
201

202

203

204

205

206

207

208

211

212

213

215

216

217

220
221

222

224

225

226

UP * 3 + LEFT * 2,

UP * 1 + RIGHT * 4,
DOWN * 1 + RIGHT * 5,
DOWN * 2.5 + RIGHT * 2,
UP * 0.5 + RIGHT * 2,

normal_hbs = VGroup()
for pos in normal_hb_positions:
normal_hb = Circle(radius=0.25, color=GREEN, fill_color=GREEN, fill_opacity=0.5,
— stroke_width=3)
normal_hb.move_to (pos)
normal_hbs.add (normal_hb)

Legend at bottom left
legend_box = Rectangle(width=3.5, height=1.8, color=WHITE, stroke_width=2)
legend_box.move_to(DOWN * 2.7 + LEFT * 4.5)

Legend items
sickle_legend_icon = VGroup(
Arc(radius=0.15, angle=PI, color=RED, stroke_width=2, fill_color=RED, fill_opacity=0.4),
)
sickle_legend_icon[0] .next_to(sickle_legend_icon[0], RIGHT, buff=0)
sickle_legend_label = Tex("Sickle Hb", font_size=18, color=RED)
sickle_legend = VGroup(sickle_legend_icon, sickle_legend_label).arrange(RIGHT, buff=0.3)

normal_legend_icon = Circle(radius=0.15, color=GREEN, fill_color=GREEN, fill_opacity=0.5,
— stroke_width=2)

normal _legend_label = Tex("Normal Hb", font_size=18, color=GREEN)

normal_legend = VGroup(normal_legend_icon, normal_legend_label).arrange(RIGHT, buff=0.3)

fetal_legend_icon = Circle(radius=0.15, color=BLUE, fill_color=BLUE, fill_opacity=0.5,
— stroke_width=2)

fetal_legend_label = Tex("Fetal Hb", font_size=18, color=BLUE)

fetal_legend = VGroup(fetal_legend_icon, fetal_legend_label).arrange (RIGHT, buff=0.3)

legend_items = VGroup(sickle_legend, normal_legend, fetal_legend) .arrange (DOWN,
— aligned_edge=LEFT, buff=0.2)
legend_items.move_to(legend_box.get_center())

legend_group = VGroup(legend_box, legend_items)

2. Counter at bottom right showing functional hemoglobin percentage
counter_box = Rectangle(width=3, height=1.2, color=WHITE, stroke_width=2)
counter_box.move_to(DOWN * 2.9 + RIGHT * 4.5)

counter_label = Tex("\\textbf{Functional Hbl}'", font_size=20)
counter_label.move_to(counter_box.get_center() + UP * 0.3)

initial_percentage = int((len(normal_hbs) / (len(sickle_cells) + len(normal_hbs))) * 100)
counter_value = Tex(f"\\textbf{{{initial_percentage}\\%}}", font_size=32, color=YELLOW)
counter_value.move_to (counter_box.get_center() + DOWN * 0.25)

counter_group = VGroup(counter_box, counter_label, counter_value)

Fade in everything

self.play(
Create(sickle_cells),
Create(normal_hbs),
Create (legend_group) ,
Create(counter_group) ,
run_time=1.5

)

self .wait (1)

15

229

230

231

232

233

234

251

252

253

255

256

257

258

260

261

262

263

265

266

10

11

12

13

14

15

3. Fade in fetal hemoglobin (blue circles) and update counter
fetal_hb_positions = [
UP * 2.8 + RIGHT * 3.5,

UP * 0.8 + LEFT * 3.5,

UP * 1.8 + RIGHT * 5.5,
DOWN * 0.3 + RIGHT * 0.5,
DOWN * 1.8 + RIGHT * 4.5,
DOWN * 2.5 + LEFT * 3,

UP * 3.2 + LEFT * 0.5,
DOWN * 0.8 + LEFT * 4.5,

fetal_hbs = VGroup()
for pos in fetal_hb_positions:
fetal_hb = Circle(radius=0.25, color=BLUE, fill_color=BLUE, fill_opacity=0.5,
— stroke_width=3)
fetal_hb.move_to(pos)
fetal_hbs.add(fetal_hb)

Calculate new percentage

new_percentage = int((len(normal_hbs) + len(fetal_hbs)) / (len(sickle_cells) + len(normal_hbs)
— + len(fetal_hbs)) * 100)

new_counter_value = Tex(f"\\textbf{{{new_percentage}\\/}}", font_size=32, color=GREEN)
new_counter_value.move_to(counter_value.get_center())

self.play(
FadeIn(fetal_hbs, lag_ratio=0.1),
Transform(counter_value, new_counter_value),
run_time=2

)

self.wait (1.5)

Final message

cure_text = Tex("\\textbf{Malfunctioned Haemoglobin Diluted}", font_size=40, color=WHITE)
cure_text_box = Rectangle(width=8, height=1, color=GREEN, stroke_width=3, fill_color=GREEN,
— fill_opacity=0.3)

cure_text.move_to(ORIGIN)

self.play(Create(cure_text_box), Write(cure_text), run_time=1)
self.wait (2)

application_blood_cancer.py

This file contains code for creating animations about gene therapy applications for blood cancer, specifically
CAR-T cell therapy for leukemia and its side effects.

from manim import *
import random

BLOOD CANCER APPLICATION SCENES

class Scenel2_Chapter3Title(Scene):
"""Chapter 3 Title: Leukaemia and Lymphoma'""
def construct(self):
Text animation
chapter = Tex("{\\scshape\\bfseries CHAPTER III}", font_size=50, color=YELLOW)
title = Tex("{\\bfseries Leukaemia and Lymphomal}", font_size=64, color=YELLOW)
separator = Line(start=LEFT * 3, end=RIGHT #* 3, color=0RANGE, stroke_width=4)

chapter.move_to(UP * 0.75)
title.move_to(DOWN * 0.75)

16

16 separator.move_to (ORIGIN)

17

18 self.wait (1) # for editing

19

20 self.play(

21 Write(chapter, run_time=1.5),

22 Create(separator, run_time=1.5),
23 Write(title, run_time=1.5)

24)

25

26 self.wait (3)

27
28 class Scenel3_WBCDivision(Scene):

29 """hite Blood Cell Division and Mutation Introduction Scene'""

30 def construct(self):

31 # Create initial white blood cell

32 initial_cell = Circle(radius=0.3, color=WHITE, fill_opacity=0.8, fill_color=WHITE,
— stroke_width=2)

33 initial_cell.move_to (ORIGIN)

34

35 # Store all cells in a list

36 cells = [initial_cell]

37

38 self.add(initial_cell)

39 self .wait (1)

40

41 # Division loop

42 max_cells = 100

43 division_interval = 0.15 # Time between divisions

44 cell_radius = 0.3

45

46 def find_non_overlapping_position(parent_pos, existing_cells, max_attempts=50):

47 ""EFind a position for new cell that doesn't overlap with existing cells"""

a3 for attempt in range(max_attempts):

49 angle = np.random.uniform(0, 2 * np.pi)

50 distance = cell_radius * 2.5 # Start at safe distance

51 offset = np.array([np.cos(angle), np.sin(angle), 0]) * distance

52 new_pos = parent_pos + offset

53

54 # Check i1f position is wvaltd (not overlapping and within frame)

55 if abs(new_pos[0]) < config.frame_width / 2 - cell_radius and \

56 abs(new_pos[1]) < config.frame_height / 2 - cell_radius:

57

58 # Check overlap with existing cells

59 overlapping = False

60 for cell in existing_cells:

61 dist = np.linalg.norm(new_pos - cell.get_center())

62 if dist < cell_radius * 2.2: # Mintmum safe distance

63 overlapping = True

64 break

65

66 if not overlapping:

67 return new_pos

68

69 # If no good position found, return random posttion with larger offset

70 angle = np.random.uniform(0, 2 * np.pi)

71 distance = cell_radius * 4

72 offset = np.array([np.cos(angle), np.sin(angle), 0]) * distance

73 return parent_pos + offset

74

75 while len(cells) < max_cells:

76 # Select a random cell to divide from all exzisting cells

77 if len(cells) > O:

78 parent = random.choice(cells)

17

79 parent_pos = parent.get_center()
80

81 # Find positions for two daughter cells

82 posl = find_non_overlapping_position(parent_pos, cells)

83

84 # Create first daughter cell

85 new_celll = Circle(radius=cell_radius, color=WHITE, fill_opacity=0.8,
— fill_color=WHITE, stroke_width=2)

86 new_celll.move_to(parent_pos)

87

88 # Temporarily add to list to check for second position

89 temp_cells = cells + [new_celll]

90 pos2 = find_non_overlapping_position(parent_pos, temp_cells)

01

92 # Create second daughter cell

93 new_cell2 = Circle(radius=cell_radius, color=WHITE, fill_opacity=0.8,
« fill_color=WHITE, stroke_width=2)

094 new_cell2.move_to(parent_pos)

95

96 # Remove parent cell and add daughter cells

97 self.remove (parent)

08 cells.remove (parent)

99

100 cells.append(new_celll)

101 cells.append(new_cell2)

102

103 self.add(new_celll, new_cell2)

104

105 # Animate cells moving to their positions

106 self.play(

107 new_celll.animate.move_to(posl),

108 new_cell2.animate.move_to(pos2),

109 run_time=0.3,

110 rate_func=smooth

111)

112

113 if len(cells) >= max_cells:

114 break

115

116 self .wait (2)

117

118 class Sceneld_CARTCellTherapy (Scene):

119 """CAR T-cell Therapy Process"""

120 def construct(self):

121 # Text animation

122 title = Tex("{\\bfseries CAR-T Cell Therapyl}", font_size=72, color=YELLOW)
123

124 self .wait(2) # for editing

125

126 self.play(Write(title, run_time=1))

127

128 self .wait(3)

130 class Scenel5_HighRateBut(Scene):

131 def construct(self):

132 # Text animation

133 text = Tex("\\textbf{High Remission Rate}", font_size=64, color=YELLOW)
134 text.move_to(UP * 0.5)

135 self.wait (1.5)

136 self.play(Write(text, run_time=1))

137 self.wait (1)

138

139 but_text = Tex("\\textbf{But...?}'", font_size=64, color=RED)

140 but_text.move_to(DOWN * 0.5)

18

141 self.play(Write(but_text, run_time=1))
142 self .wait(2)

122 class Scenel6_CytokineStorm(Scene):

145 "MCytokine Storm Explanation Scene""

146 def construct(self):

147 # 1. T cell

148 t_cell = Circle(radius=0.5, color=BLUE, fill_color=BLUE, fill_opacity=0.5, stroke_width=3)

149 t_cell.move_to(UP * 2.5)

150 t_cell_label = Tex("\\textbf{T Celll}", font_size=24, color=BLUE).next_to(t_cell, DOWN,
— buff=0.3)

151 t_cell_group = VGroup(t_cell, t_cell_label)

152

153 # 2. Cancer Cell

154 cancer_cell = Circle(radius=0.5, color=RED, fill_color=RED, fill_opacity=0.5, stroke_width=3)

155 cancer_cell.move_to(DOWN * 2.5 + LEFT * 3)

156 cancer_cell_label = Tex("\\textbf{Cancer Celll}", font_size=24, color=RED) .next_to(cancer_cell,
— DOWN, buff=0.3)

157 cancer_cell_group = VGroup(cancer_cell, cancer_cell_label)

158

159 # 3. Healthy Cell

160 healthy_cell = Circle(radius=0.5, color=GREEN, fill_color=GREEN, fill_opacity=0.5,
< stroke_width=3)

161 healthy_cell.move_to(DOWN * 2.5 + RIGHT * 3)

162 healthy_cell_label = Tex("\\textbf{Healthy Cell}", font_size=24,
« color=GREEN) .next_to(healthy_cell, DOWN, buff=0.3)

163 healthy_cell_group = VGroup(healthy_cell, healthy_cell_label)

164

165 # arrows

166 arrow_to_cancer = Arrow(

167 start=t_cell_group.get_bottom(),

168 end=cancer_cell_group.get_top() + DOWN * 0.1,

169 color=YELLOW,

170 buff=0.5,

171 stroke_width=6

172)

173

174 arrow_to_healthy = Arrow(

175 start=t_cell_group.get_bottom(),

176 end=healthy_cell_group.get_top() + DOWN * 0.1,

177 color=YELLOW,

178 buff=0.5,

179 stroke_width=6

180)

181

182 # text

183 text = Tex("\\textbf{Cytokine Storm}", font_size=48, color=0RANGE)

184 text.next_to(arrow_to_healthy.get_center(), RIGHT, buff=1)

185

186 self.wait (1)

187 self.play(

188 Create(t_cell), Write(t_cell_label),

189 Create(cancer_cell), Write(cancer_cell_label),

190 Create (healthy_cell), Write(healthy_cell_label),

191 run_time=0.5

192)

193 self.wait (1)

194 self.play(Create(arrow_to_cancer), run_time=0.5)

195 self.play(Create(arrow_to_healthy), Write(text), run_time=0.5)

196

197 self.wait (3)

19

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

application_neuromuscular.py

This file contains code for creating animations about gene therapy applications for neuromuscular diseases,
specifically Nusinersen therapy for Spinal Muscular Atrophy (SMA).

from manim import *
NEUROMUSCULAR DISEASE APPLICATION SCENES

class Scenel7_Chapter4Title(Scene):
def construct(self):
Text animation
chapter = Tex("{\\scshape\\bfseries CHAPTER IV}", font_size=50, color=YELLOW)
title = Tex("{\\bfseries Spinal Muscular Atrophyl}", font_size=64, color=YELLOW)
separator = Line(start=LEFT * 3, end=RIGHT #* 3, color=0RANGE, stroke_width=4)

chapter.move_to(UP * 0.75)
title.move_to(DOWN * 0.75)
separator.move_to (ORIGIN)

self.play(
Write(chapter, run_time=1.5),
Create(separator, run_time=1.5),
Write(title, run_time=1.5)

self.wait(3)

class Scenel8_BackupSMN2Gene (Scene) :
def construct(self):
title
title = Tex("\\textbf{SMN2 Gene As a Backupl}", font_size=48, color=YELLOW)
title.move_to(UP * 3)
self.play(Write(title), run_time=1)
self.wait (1)

A segment of SMN2 RNA, represented by two parallel wavy lines (sine waves)
x_start = -6
x_end = 6
amplitude = 0.3
frequency = 1
wave_func = lambda x: amplitude * np.sin(frequency * x)
smn2_rna = VGroup(
ParametricFunction(
lambda t: np.array([t, wave_func(t) + 0.3, 0]),
t_range=[x_start, x_end],
color=BLUE,
stroke_width=4

),
ParametricFunction(
lambda t: np.array([t, wave_func(t) - 0.3, 0]),
t_range=[x_start, x_end],
color=BLUE,
stroke_width=4

)

smn2_rna.scale(1.3)

smn2_label = Tex("\\textbf{SMN2 RNA}", font_size=32, color=BLUE).next_to(smn2_rna, UP,
< buff=0.5)

smn2_label.shift (LEFT * 1.7 + DOWN * 1)

self.add (smn2_rna)

20

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

107

108

109

110

111

113
114

115

self.play(Write(smn2_label), run_time=1)
self .wait (1)

An error marker (red exclamation mark, with a circle around) pops on the RNA
exclamation_mark = Tex("!", font_size=56, color=RED)

error_circle = Circle(radius=0.3, color=RED, stroke_width=3)

error_marker = VGroup(error_circle, exclamation_mark).move_to(smn2_rna.get_center() + RIGHT *
— 2+ UP * 0.35)

error_flash = Flash(error_marker.get_center(), color=YELLOW, flash_radius=0.4,

« line_stroke_width=6)

self.play(Create(error_marker), error_flash, run_time=1)
self .wait (1)

two dashed lines to indicate splicing
splice_linel = DashedLine(
start=smn2_rna[0].point_from_proportion(0.5),
end=smn2_rnal[1] .point_from_proportion(0.5),
color=WHITE,
stroke_width=4,
dash_length=0.06,
buff=0
)
splice_line2 = DashedLine(
start=smn2_rna[0] .point_from_proportion(0.8),
end=smn2_rnal[1] .point_from_proportion(0.8),
color=WHITE,
stroke_width=4,
dash_length=0.06,
buff=0
)
exon7_text = Tex("\\textbf{Exon 7} \\\\excluded", font_size=28,
« color=RED) .next_to(splice_line2, RIGHT, buff=0.3)
exon7_text.next_to(error_marker, DOWN, buff=0.2)
self.play(Create(splice_linel), Create(splice_line2), Write(exon7_text), run_time=1)
self.wait (1)

arrow doun

arrow = Arrow(
start=splice_linel.get_bottom() + DOWN * 0.2,
end=splice_linel.get_bottom() + DOWN * 1.2,
color=YELLOW,
buff=0,
stroke_width=6

3/4 circle to represent truncated protein
truncated_protein = Arc(
radius=0.4,
start_angle=PI / 4,
angle=3 * PI / 2,
color=0RANGE,
stroke_width=6
) .move_to(arrow.get_end() + DOWN * 0.5)
truncated_label = Tex("\\textbf{Truncated SMN Protein}", font_size=28,
« color=0RANGE) .next_to(truncated_protein, DOWN, buff=0.3)

self.play(
Create(arrow),
Write(truncated_label),
Create(truncated_protein),
run_time=1

)

self.wait (1)

21

118

110 class Scenel9_NusinersenTherapy(Scene) :

.

120 def construct(self):

121 # recreate the ending state of Scene 18

122 # title

123 title = Tex("\\textbf{SMN2 Gene As a Backupl}", font_size=48, color=YELLOW)

124 title.move_to(UP * 3)

125 self.add(title)

126

127 # SMN2 RNA

128 x_start = -6

129 x_end = 6

130 amplitude = 0.3

131 frequency = 1

132 wave_func = lambda x: amplitude * np.sin(frequency * x)

133 smn2_rna = VGroup(

134 ParametricFunction (

135 lambda t: np.array([t, wave_func(t) + 0.3, 0]),

136 t_range=[x_start, x_end],

137 color=BLUE,

138 stroke_width=4

139) ’

140 ParametricFunction (

141 lambda t: np.array([t, wave_func(t) - 0.3, 0]),

142 t_range=[x_start, x_end],

143 color=BLUE,

144 stroke_width=4

145)

146)

147 smn2_rna.scale(1.3)

148 smn2_label = Tex("\\textbf{SMN2 RNA}", font_size=32, color=BLUE).next_to(smn2_rna, UP,
— buff=0.5)

149 smn2_label.shift (LEFT * 1.7 + DOWN * 1)

150 self.add(smn2_rna, smn2_label)

151

152 # error marker

153 exclamation_mark = Tex("!", font_size=56, color=RED)

154 error_circle = Circle(radius=0.3, color=RED, stroke_width=3)

155 error_marker = VGroup(error_circle, exclamation_mark).move_to(smn2_rna.get_center() + RIGHT *
< 2+ UP * 0.35)

156 self.add (error_marker)

157

158 # splice lines

159 splice_linel = DashedLine(

160 start=smn2_rna[0] .point_from_proportion(0.5),

161 end=smn2_rnal[l] .point_from_proportion(0.5),

162 color=WHITE,

163 stroke_width=4,

164 dash_length=0.06,

165 buff=0

166)

167 splice_line2 = DashedLine (

168 start=smn2_rnal[0].point_from_proportion(0.8),

169 end=smn2_rnal[l] .point_from_proportion(0.8),

170 color=WHITE,

171 stroke_width=4,

172 dash_length=0.06,

173 buff=0

174)

175 exon7_text = Tex("\\textbf{Exon 7} \\\\excluded", font_size=28,
« color=RED) .next_to(splice_line2, RIGHT, buff=0.3)

176 exon7_text.next_to(error_marker, DOWN, buff=0.2)

177 self.add(splice_linel, splice_line2, exon7_text)

178

22

179

180

181

182

183

184

186

187

188

189

190

191

192

193

195

196

197

198

200

201

202

203

205

206

207

209

210

211

212

214

215

216

217

229

230

231

232

233

234

235

237

238

239

240

arrow

arrow = Arrow(
start=splice_linel.get_bottom() + DOWN * 0.2,
end=splice_linel.get_bottom() + DOWN * 1.2,
color=YELLOW,
buff=0,
stroke_width=6

)

self.add (arrow)

truncated protein
truncated_protein = Arc(

radius=0.4,

start_angle=PI / 4,

angle=3 * PI / 2,

color=0RANGE,

stroke_width=6
) .move_to(arrow.get_end() + DOWN * 0.5)
truncated_label = Tex("\\textbf{Truncated SMN Protein}", font_size=28,
< color=0RANGE) .next_to(truncated_protein, DOWN, buff=0.3)
self.add(truncated_protein, truncated_label)

self.wait (1)
NEW SCENE

new_title = Tex("\\textbf{Nusinersen Therapyl}", font_size=48, color=YELLOW)
new_title.move_to(UP * 3)
self.play(

Transform(title, new_title),

FadeOut (exon7_text),

FadeOut (splice_linel), FadeOut(splice_line2),

run_time=1

Proofreader (a purple oval)

proofreader = Ellipse(width=1.8, height=1.3, color=PURPLE, fill_color=PURPLE,
— fill_opacity=0.5, stroke_width=3)

proofreader_label = Tex("\\textbf{Nusinersen}'", font_size=32, color=WHITE)
proofreader_label.move_to(proofreader.get_center())

proofreader_group = VGroup(proofreader, proofreader_label)

move out of screen on the right
proofreader_group.move_to(error_marker.get_center() + RIGHT * 8 + UP % 0.5)

animate proofreader moving to the error site

self.play(
proofreader_group.animate.move_to(error_marker.get_center() + UP * 0.5),
run_time=1

)

animate proofreader fixzing the error

self.play(
FadeOut (error_marker) ,
Flash(error_marker.get_center(), color=GREEN, flash_radius=0.4, line_stroke_width=6),
run_time=1

)

self.wait (1)

fized protein

fixed_protein = Circle(radius=0.4, color=GREEN, stroke_width=6)

fixed_label = Tex("\\textbf{Full-length SMN Protein}", font_size=28, color=GREEN)
fixed_protein.move_to(truncated_protein.get_center())
fixed_label.move_to(truncated_label.get_center())

animate splicing and protein change

23

241

242

244

245

246

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

self.play(
Transform(truncated_protein, fixed_protein),
Transform(truncated_label, fixed_label),
run_time=1

self.wait (2)

ethics.py

This file contains code for creating animations about ethical considerations in gene therapy, including historical

cases, public opinion, and regulatory concerns.

from manim import *
import random

ETHICAL DISCUSSION SCENES

class Scene20_EthicalTitle(Scene):
"""Chapter Title: Ethical Considerations
def construct(self):
Text animation

mnn

chapter = Tex("{\\scshape\\bfseries CHAPTER V}", font_size=50, color=YELLOW)
title = Tex("{\\bfseries Gene Therapy Ethics}", font_size=64, color=YELLOW)
separator = Line(start=LEFT * 3, end=RIGHT * 3, color=0RANGE, stroke_width=4)

chapter.move_to (UP * 0.75)
title.move_to(DOWN * 0.75)
separator.move_to (ORIGIN)

self.play(
Write(chapter, run_time=1.5),
Create(separator, run_time=1.5),
Write(title, run_time=1.5)

self.wait (3)
class Scene21_HumanWithQuestionMarks(Scene) :

def construct(self):
human svg

human = SVGMobject("./human_outline.svg", £fill_color=BLUE, fill_opacity=0.3,
< stroke_color=BLUE, stroke_width=2, should_center=True)

human.scale(5)
human.move_to (DOWN*1.5)
self.play(Create(human), run_time=2)

Create question marks with different properties
question_marks = []

colors = [RED, YELLOW, GREEN, PURPLE, ORANGE, PINK, TEAL]

positions = [

DOWN * 2 + LEFT * 3,

UP * 3 + RIGHT * 2,
LEFT * 4 + UP * 1,
RIGHT * 4 + UP * 0.5,
DOWN * 2.5 + RIGHT * 4,
LEFT * 3.5 + UP * 3,
RIGHT * 3 + DOWN * 3.5,
LEFT * 2 + UP * 1.5,
RIGHT * 2.5 + UP * 2,
LEFT * 5 + UP * 2.5,
RIGHT * 5 + UP * 1.5,

24

49 DOWN * 3.5 + LEFT * 1.5,

50]

51

52 # Predefined stzes for each question mark

53 sizes = [65, 72, 48, b5, 78, 43, 69, 51, 76, 58, 62, 71]

54

55 for i, (pos, color, size) in enumerate(zip(positiomns, colors * 2, sizes)):

56 gmark = Tex("7?", font_size=size, color=color)

57 gmark.move_to (pos)

58 question_marks.append (qmark)

59

60 # Fade in question marks with lag

61 self.play(

62 LaggedStart (¥ [FadeIn(qmark) for gmark in question_marks],

63 lag_ratio=0.5,

64 run_time=6)

65)

66

67 # text

68 philosophical_text = Tex("$\\bullet$ Philosophical question?", font_size=50, color=WHITE)
69 medical_safety_text = Tex("$\\bullet$ Medical safety!", font_size=50, color=WHITE)
70

71 philosophical_text.move_to(DOWN * 2.6 + LEFT * 4)

72 medical_safety_text.next_to(philosophical_text, DOWN, aligned_edge=LEFT, buff=0.2)
73

74 self.play(Write(philosophical_text, run_time=1))

75 self .wait(0.5)

76 self.play(Write(medical_safety_text, run_time=1))

77 self .wait(3)

78
79 class Scene22_JesseGelsingerCaseTimeline(Scene) :

80 def construct(self):

81 # Title

82 title = Tex("\\textbf{Jesse Gelsinger Case Timelinel}", font_size=48, color=YELLOW)

83 title.move_to(UP * 3.5)

84 self.play(Write(title, run_time=0.5))

85 self .wait(0.5)

86

87 # Timeline arrow

88 timeline = Arrow(start=LEFT * 6 + UP * 3, end=LEFT * 6 + DOWN * 4, color=YELLOW,

< stroke_width=4)

89 self.play(Create(timeline), run_time=0.5)

90 self .wait(0.5)

o1

92 # Events

93 events = [

094 ("{\\bfseries 18 Jun 1981:}", "Jesse Gelsinger born, later diagnosed with OTC
— deficiency"),

95 ("{\\bfseries 13 Sept 1999:}", "At 18, Gelsinger injected with experimental gene
— therapy"),

96 ("{\\bfseries 17 Sept 1999:}", "Gelsinger died from organ failure due to immune
— response"),

o7]

98

99 for i, event_text in enumerate(events):

100

101

102

103

104

105

106

108

event = VGroup(

Tex(event_text[0], font_size=28, color=WHITE),
Tex(event_text[1], font_size=32, color=WHITE)

)
event.arrange (DOWN, aligned_edge=LEFT)

x_pos = LEFT * 6

y_pos = UP * 2 + (DOWN * 4) * (i / (len(events) - 1))
marker = Dot(point=x_pos + y_pos, color=RED, radius=0.1)

event.next_to(marker, RIGHT, buff=0.3)

25

109 self.play(Create(marker), Write(event, run_time=1))
110 self.wait (0.5)

111

112 self .wait(3)

113

114 class Scene23_BubbleBoy(Scene):

115 def construct(self):

116 # Create 4 stick figures in blue bubbles arranged in 2z2 grid

117 stick_figures = []

118 bubbles = []

119

120 # Positions for 2z2 grid

121 positions = [

122 UP * 1.5 + LEFT * 2, # Top left

123 UP * 1.5 + RIGHT * 2, # Top right

124 DOWN * 1.5 + LEFT * 2, # Bottom left

125 DOWN * 1.5 + RIGHT * 2 # Bottom right

126]

127

128 for pos in positions:

129 # Create stick figure

130 stick = VGroup(

131 Circle(radius=0.15, color=WHITE, fill_opacity=1), # Head

132 Line(start=UP * 0.25, end=DOWN * 0.5, color=WHITE), # Body

133 Line(start=UP * 0.25, end=DOWN * 0.15 + LEFT * 0.25, color=WHITE), # Left arm
134 Line(start=UP * 0.25, end=DOWN * 0.15 + RIGHT * 0.25, color=WHITE), # Right arm
135 Line(start=DOWN * 0.5, end=DOWN * 0.8 + LEFT * 0.2, color=WHITE), # Left leg
136 Line(start=DOWN * 0.5, end=DOWN * 0.8 + RIGHT * 0.2, color=WHITE), # Right leg
137)

138 stick[0] .move_to(UP * 0.4)

139 stick.scale(0.8)

140 stick.move_to(pos)

141

142 # Create bubble

143 bubble = Circle(radius=1.2, color=BLUE, stroke_width=4, fill_opacity=0.3, fill_color=BLUE)
144 bubble.move_to(pos)

145

146 stick_figures.append(stick)

147 bubbles. append (bubble)

148

149 # Show all stick figures and blue bubbles

150 self.play(

151 *[Create(bubble) for bubble in bubbles],

152 *[Create(stick) for stick in stick_figures],

153 run_time=1

154)

155 self.wait (0.5)

156

157 # Change colors: bottom right to red, others to green

158 # Also create warning text for bottom right

159 warning_text = Tex("Accidental activation\\\\ of leukaemia (25\\%)", font_size=32, color=RED)
160 warning_text.next_to(bubbles[3], DOWN, buff=0.2)

161

162 self.play(

163 bubbles[3] .animate.set_color(RED), # Bottom right to red

164 *[bubbles[i] .animate.set_color (GREEN) for i in range(3)1, # Others to green

165 Write(warning_text),

166 run_time=1

167)

168

169 self.wait (3)

170
171 class Scene24_ImmuneToGeneTherapy(Scene):

26

172 """Scene showing tmmune response to gene therapy"""

173 def construct(self):
174 # 1. Create green human outline on the right half
175 human = SVGMobject ("./human_outline.svg", f£ill_color=GREEN, fill_opacity=0.3,
« stroke_color=GREEN, stroke_width=3, should_center=True)
176 human.scale(3)
177 human.move_to (RIGHT * 3)
178
179 # Create AAV wiral vector with RNA strand (upper-left)
180 aav_capsid = RegularPolygon(n=6, radius=1.2, color=PURPLE, stroke_width=4, fill_color=PURPLE,

— fill_opacity=0.2)

181

182 spike_positions = [

183 UP * 1.2,

184 UP * 0.6 + RIGHT * 1.0,

185 DOWN * 0.6 + RIGHT * 1.0,

186 DOWN * 1.2,

187 DOWN * 0.6 + LEFT * 1.0,

188 UP * 0.6 + LEFT * 1.0

189]

190

191 spikes = VGroup()

192 for pos in spike_positions:

193 spike = Triangle(color=PURPLE, fill_color=PURPLE, fill_opacity=0.8)
194 spike.scale(0.15)

195 spike.move_to(pos)

196 angle = np.arctan2(pos[1], pos[0])

197 spike.rotate(angle + PI/2)

108 spikes.add(spike)

199

200 # RNA strand inside

201 rna_strand = ParametricFunction(

202 lambda t: np.array([

203 0.2 * np.sin(4 * PI * t),

204 1.5 * t - 0.75,

205 0

206 D,

207 t_range=[0, 1],

208 color=GREEN,

209 stroke_width=6

210) .scale(0.3)

211

212 aav_capsid.scale(0.5)

213 spikes.scale(0.5)

214 aav_vector = VGroup(aav_capsid, spikes, rna_strand)
215 aav_vector.move_to(UP * 2 + LEFT * 4)

216

217 # Create CRISPR-Cas9 protein (lower-left)
218 crispr_cas9 = VGroup(

219 Rectangle (width=1.5, height=0.6, color=BLUE, fill_color=BLUE, fill_opacity=0.5),
220 Tex("\\textbf{CRISPR-\\\\Cas9}'", font_size=20, color=BLUE)
221)

222 crispr_cas9.scale(1.4)

223 crispr_cas9[1] .move_to(crispr_cas9[0].get_center())
224 crispr_cas9.move_to(DOWN * 2 + LEFT * 4)
225

226 # Display all elements

227 self.play(

228 Create (human) ,

229 Create(aav_vector),

230 Create(crispr_cas9),

231 run_time=1

232)

233 self.wait (1)

27

234

235

236

237

238

239

242

243

244

246

247

248

250

251

252

253

254

255

256

257

259

260

261

262

264

265

266

268

269

270

271

273

274

275

277

278

279

280

282

283

284

286

287

288

289

291

292

293

295

296

2. Vector approaches human but is bounced back

target_pos = human.get_left() + LEFT * 0.5

self.play(
aav_vector.animate.move_to(target_pos)
run_time=1

)

self.wait (0.3)

Bounce back with shake

self.play(
aav_vector.animate.shift (LEFT * 0.3),
run_time=0.2

)

self.play(

aav_vector.animate.shift (LEFT * 1.5)
run_time=0.8,

rate_func=smooth

#)

self.wait (0.5)

3. Red cross forms on vector and it turns gray

cross_linel = Line(
start=UP * 0.5 + LEFT * 0.5,
end=DOWN * 0.5 + RIGHT * 0.5,
color=RED,
stroke_width=8

)

cross_line2 = Line(
start=UP * 0.5 + RIGHT * 0.5,
end=DOWN * 0.5 + LEFT * 0.5,
color=RED,
stroke_width=8

)

red_cross_vector = VGroup(cross_linel, cross_line?2)
red_cross_vector.move_to(aav_vector.get_center())

self.play(
Create(red_cross_vector),
aav_capsid.animate.set_color (GRAY),

aav_capsid.animate.set_fill(GRAY, opacity=0.2),
*[spike.animate.set_color (GRAY) .set_fill(GRAY, opacity=0.2) for spike in spikes],

aav_vector.animate.set_stroke (GRAY),
rna_strand.animate.set_color (GRAY),
run_time=1

)

self.wait (1)

4. CRISPR-Cas9 enters the human
self.play(

crispr_cas9.animate.move_to (human.get_center()),

run_time=2

)
self.wait (0.5)

El

Cross forms on human and human turns gray

cross_line3 = Line(
start=UP * 1.5 + LEFT * 1.5,
end=DOWN * 1.5 + RIGHT * 1.5,
color=RED,
stroke_width=10

)

cross_line4 = Line(

28

297 start=UP * 1.5 + RIGHT * 1.5,

208 end=DOWN * 1.5 + LEFT * 1.5,

209 color=RED,

300 stroke_width=10

301)

302 red_cross_human = VGroup(cross_lineS , cross_line4)

303 red_cross_human.move_to(human.get_center())

304

305 self.play(

306 Create(red_cross_human),

307 human.animate.set_color (GRAY) .set_fill(GRAY, opacity=0.3),
308 crispr_cas9.animate.set_color(GRAY) .set_opacity(0.3),
309 run_time=1.5

310)

311 self.wait (2)

s13 class Scene25_PublicOpinionSurvey(Scene):

314 """Pyublic opinion survey on gene therapy"""

315 def construct(self):

316 # Title

317 title = Tex("\\textbf{Public Opinion Survey}", font_size=48, color=YELLOW)
318 title.move_to(UP * 3.2)

319

320 # Create 100 people icons in 10z10 grid

321 people_icons = VGroup()

322 rows, cols = 10, 10

323 spacing = 0.6

324

325 for row in range(rows):

326 for col in range(cols):

327 person = Circle(radius=0.08, color=WHITE, fill_opacity=1, fill_color=WHITE)
328 person[0] .move_to(UP * 0.1)

329

330 x_pos = (col - cols / 2) * spacing + spacing / 2

331 y_pos = (rows / 2 - row) * spacing - spacing / 2

332 person.move_to(RIGHT * x_pos + UP * y_pos + DOWN * 0.5)

333

334 people_icons.add(person)

335

336 self.play(

337 Write(title),

338 LaggedStart (* [FadeIn(person) for person in people_icons], lag_ratio=0.01),
339 run_time=1

340)

341 self .wait (1)

342

343 # Group them randomly (predefined random)

344 oppose_indices = (

345 2, 5, 8, 13, 14, 19, 20, 23, 27, 28,

346 30, 42, 45, 47, 50, 51, 52, 60, 63, 68,

347 69, 94, 97, 99, 92

348)

349 oppose_people = [people_icons[i] for i in oppose_indices]

350 support_people = [people_icons[i] for i in range(100) if i not in oppose_indices]
351

352 # Highlight 75/ in green (supporting gene therapy)

353 support_label = Tex("\\textbf{75\\/ believe in\\\\gene therapy}", font_size=48, color=GREEN)
354 support_label.move_to (LEFT * 5)

355

356 self.play(

357 * [support_people[i] .animate.set_color (GREEN) for i in range(75)],

358 Write (support_label),

359 run_time=1

29

360)

361 self.wait(0.5)

362

363 # Show the remaining 25/ in red

364 oppose_label = Tex("\\textbf{25\\% uncertain\\\\or opposed}", font_size=48, color=RED)
365 oppose_label .move_to (RIGHT * 5)

366

367 self.play(

368 * [oppose_people[i] .animate.set_color(RED) for i in range(25)],
369 Write (oppose_label),

370 run_time=1

371)

372

373 self .wait(3)

374
375 class Scene26_EthicalConcerns(Scene):

376 """Ethical concerns about gene therapy"""
377 def construct(self):
378 # Title
379 title = Tex("{\\bfseries Ethical Concerns}'", font_size=56, color=YELLOW)
380 title.move_to(UP * 3)
381
382 # Concern statements
383 concernl_title = Tex("$\\bullet$ \\textbf{ "Playing God''}", font_size=36, color=RED)
384 concernl_detail = Tex("Changing nature may cause unexpected dangerous results", font_size=28)
385 concernl = VGroup(concernl_title, concernl_detail).arrange(DOWN, buff=0.2, aligned_edge=LEFT)
386
387 concern2_title = Tex("$\\bullet$ \\textbf{Fairness and Access}", font_size=36, color=0RANGE)
388 concern2_detail = Tex("Treatments cost millions, risking a permanent genetic divide",
— font_size=28)
389 concern2 = VGroup(concern2_title, concern2_detail).arrange(DOWN, buff=0.2, aligned_edge=LEFT)
390
301 concern3_title = Tex("$\\bullet$ \\textbf{Threat to Human Identityl}", font_size=36,
— color=PURPLE)
392 concern3_detail = Tex("Brain-editing errors could cause catastrophic damage", font_size=28)
393 concern3 = VGroup(concern3_title, concern3_detail).arrange(DOWN, buff=0.2, aligned_edge=LEFT)
394
395 concerns = VGroup(concernl, concern2, concern3).arrange(DOWN, buff=0.7, aligned_edge=LEFT)
396 concerns.move_to(DOWN * 0.3)
397
398 # Animate title
399 self.play(Write(title), run_time=1)
400 self .wait(0.5)
401
402 # Animate concerns appearing one by one
403 self.play(FadeIn(concernl, shift=UP * 0.3), run_time=1)
404 self.wait(0.5)
405 self.play(FadeIn(concern2, shift=UP * 0.3), run_time=1)
406 self.wait(0.5)
407 self.play(FadeIn(concern3, shift=UP * 0.3), run_time=1)
408
409 self .wait(3)

410

30

	Research Approach and Methodology
	Key Sources Consulted
	3D Models of Protein Structures
	Video/Animation Clips

	Major Insights and Discovery
	Personal Contribution to the Project
	My Workflow for Contributing to the Video Essay
	Animations Created with Python
	Leadership Role in the Group

	Reflection on Learning
	Understanding of Genetics
	Skills Acquired

