
CCST9064 Group L { Video Essay
Individual Research Log

Student Information

Name: SHING, Zhan Ho Jacob
Student ID: 3036228892

Group Number: L
Topic: Somatic Gene Therapy

1 Research Approach and Methodology

For this group project, I am not responsible for the research part. However, for video production purposes,
research was still an essential part to obtain contents and ensure my content's accuracy.

The sources that I have consulted, as will be listed in the later sections, are mainly from credible scienti�c
database { the Protein Data Bank (PDB) { and educational videos from reputable channels on YouTube. The
research methodology mainly involves keyword searching within PDB and YouTube. The keywords are taken
from the video script written by the scriptwriters and from the storyboard.

2 Key Sources Consulted

As our video essay is about highly specialised scienti�c topic { somatic gene therapy { there are many credible
sources that can be used to explain the concepts clearly visually. Using existing materials also saves the
production time and reduces the need for creating complicated animations de novo. I have researched and
collected the following materials:

2.1 3D Models of Protein Structures

Many of the protein structures are already determined through experimental methods and are available in the
Protein Data Bank (PDB, https://www.rcsb.org/). Further, for dynamically showing the structures, the
molecular data downloaded from PDB can be fed into the software ChimeraX (https://www.cgl.ucsf.edu/
chimerax/), colour-coded, and exported as a 3D object �le, that can be further animated with After E�ects.

In our video essay, the following protein structures were (adapted and) used:

� [1APL] Crystal Structure of a MAT-�2 Homeodomain-Operator Complex Suggests a General Model for
Homeodomain-DNA Interactions { the double helix DNA structure was extracted for the opening scene.

� [2HHB] The Crystal Structure of Human Deoxyhaemoglobin at 1.74 Angstroms Resolution { the normal
human haemoglobin structure, used along with 2HBS.

� [2HBS] The High Resolution Crystal Structure of Deoxyhemoglobin S { the sickle-cell haemoglobin
structure, used along with 2HHB to illustrate the molecular basis of sickle-cell anaemia.

� [3FSN] Crystal Structure of RPE65 at 2.14 Angstrom Resolution { to illustrate the protein involved in
gene therapy for Leber's Congenital Amaurosis (LCA).

� [4QQ6] Crystal Structure of tudor domain of SMN1 in complex with a small organic molecule { to
illustrate the protein involved in gene therapy for Spinal Muscular Atrophy (SMA).

Apart from the models provided by PDB, there was also one double helix DNA model created by the software
ChimeraX, using a randomly generated DNA sequence, for animating the rotating double helix DNA in the
video.

2.2 Video/Animation Clips

To illustrate the complex biological processes involved in somatic gene therapy, I have searched for existing
video/animation clips that can be used directly or adapted for our video essay. The following clips were used:

� 3D Animation of a Clogged Blood Vessel Due to a Sickle Cell Disease (https://youtu.be/BmnfR-D8ewE)
{ to illustrate the e�ect of sickle-cell anaemia blocking blood vessels.

� Gene Therapy Basics (2022 Update) (https://www.youtube.com/watch?v=kAtd9X29SdQ) { to illustrate
\delivering a healthy gene into a cell as compensation".

1

https://www.rcsb.org/
https://www.cgl.ucsf.edu/chimerax/
https://www.cgl.ucsf.edu/chimerax/
https://www.rcsb.org/structure/1APL
https://www.rcsb.org/structure/2HHB
https://www.rcsb.org/structure/2HBS
https://www.rcsb.org/structure/3FSN
https://www.rcsb.org/structure/4QQ6
https://youtu.be/BmnfR-D8ewE
https://www.youtube.com/watch?v=kAtd9X29SdQ

� Breast Cancer (https://vimeo.com/871843858) { to illustrate the idea of uncontrolled cell growth in
cancer.

� Introduction to CRISPR-Cas9 Genome Editing (https://www.youtube.com/watch?v=iEA-NleJoqY) {
to illustrate the CRISPR-Cas9 gene editing mechanism.

� A Look at How CAR-T Cell Therapy Works (https://www.youtube.com/watch?v=mXADrg_ckhI) { to
illustrate the CAR-T cell therapy mechanism.

3 Major Insights and Discovery

As opposed to my original expectation that all of the protein structures in our body can be found on PDB
as long as their genetic sequences are known, during the research process, I have discovered this to be false.
Many of the protein structures cannot be found on PDB. Later investigations on this issue revealed that the
structure of a protein cannot be determined simply through mathematical or computer simulations even if the
exact amino acid chain is known. This is because protein folding is a complex process and is a�ected by many
factors.

The truth is, many of the existing protein structures in PDB, except for those simple peptides, are determined
through experimental methods. This can be veri�ed because many of the PDB entries are actually a protein
in complex with other molecules, such as ligands, inhibitors, or is a protein dissolved in a solvent, not the pure
protein alone.

4 Personal Contribution to the Project

My responsibilities in this group project is to realise the storyboard designed by Jialiu Xu by assembling the
video clips, animations, voiceovers together into the �nal video.

4.1 My Work
ow for Contributing to the Video Essay

After receiving the storyboard from Jialiu Xu, I started creating the animation clips that were implementable
using Python with the Manim library. The more complex animations, such as the sickle cell anaemia animations,
were looked up online and directly used in our video with proper in-video citation. Those videos were not created
because the complexity is beyond the requirement of this course.

With Manim, a total of 26 scenes were created (of which only 25 were used as one of them was no longer
applicable after some modi�cations). Some of the designs in the original storyboard were not adopted due to
technical limitations and time constraints.

As for the protein structure models, I fetched them from PDB into ChimeraX. With the built-in functions of
ChimeraX, I colour-coded the structures (mainly by chain) and exported them as .glb 3D object �les. These
�les were then imported into Adobe After E�ects for simple animating (mainly rotation and zooming).

The animation clips, B-roll footages, 3D animations, and voiceover recordings were assembled together in
Adobe Premiere Pro. Some simple video e�ects, such as zooming in/out, panning, and fading transitions were
also applied in Premiere Pro to enhance the visual experience.

4.2 Animations Created with Python

Various animation clips were created using Python with the library Manim. The source codes are attached at
the end of this document. For the sake of academic integrity, it is declared that large language models were
involved in writing the following code �les. The use of LLMs was mainly for handling complex mathematical
expressions to save up time for actually producing the animations.

4.3 Leadership Role in the Group

Initially, two members were assigned the role as video production. This is impractical as the video editing
software cannot be used collaboratively and only one person can work on the project �les at a time. Uploading
the project �les to a cloud storage for sharing was also not an option as the �les can get very large (several
gigabytes) and the upload/download time would be too long.

Therefore, for easier task delegation, I took the initiative to o�er the other video production member to
focus on creating the storyboard from the script. This is e�ective since I, as a Computer Science student, �nd

2

https://vimeo.com/871843858
https://www.youtube.com/watch?v=iEA-NleJoqY
https://www.youtube.com/watch?v=mXADrg_ckhI

it di�cult to come up with creative visual designs from scratch on top of the script. However, with my previous
experience in video editing, I can e�ectively realise the storyboard into the �nal video. Therefore, we agreed on
this division of labour, which greatly improved our productivity and was a successful collaboration.

5 Re
ection on Learning

5.1 Understanding of Genetics

As I was previously enrolled as an MBBS student, I already have some foundational knowledge of genetics
through trainings from the IASM block. This has equipped me with the necessary background and skills to
understand the complex concepts involved in somatic gene therapy. On the science side, through this project, I
have additional knowledge about the speci�c applications of somatic gene therapy, such as Luxturna for LCA,
Nusinersen for SMA, etc. On the moral side, I have also learned about more ethical considerations from more
aspects, such as public opinion and fair access to treatment.

5.2 Skills Acquired

By working on this project, I have deepened my skills in professional video production. I have also learned new
skills in 3D molecular visualisation and animation using ChimeraX and Adobe After E�ects. Further, in 2D
animation creation, I have improved my skills in using Python with the Manim library to create mathematical
and scienti�c animations programmatically.

Annex: Python Source Codes for Creating Animations

intro scenes.py

This �le contains code for creating animations used in the introduction section of the video.

1 from manim import *

2

3 # INTRODUCTION SCENES

4

5 class Scene1_TitleText(Scene):

6 """Opening shot: Somatic Gene Therapy"""

7 def construct(self):

8 # Text animation

9 text = Tex("Science Fiction", font_size=48, color=GREEN)

10 self.play(Write(text))

11 self.wait(2)

12

13 newText = Tex("Somatic Gene Therapy", font_size=48, color=RED)

14 self.play(Transform(text, newText))

15 self.wait(3)

16

17 self.play(FadeOut(text))

18

19 class Scene2_FixingGeneErrorsInACell(Scene):

20 """Scene: Fixing Gene Errors in a Cell"""

21 def construct(self):

22 # Create cell (outer circle) with background

23 cell = Circle(radius=2.5, color=BLUE, stroke_width=3, fill_color=BLUE, fill_opacity=0.3)

24

25 # Create nucleus (inner circle) - smaller size with background

26 nucleus = Circle(radius=0.9, color=PURPLE, stroke_width=3, fill_color=PURPLE,

fill_opacity=0.35),!

27

28 # Create problematic DNA (red double helix)

29 # Simple representation using two intertwined curves

30 dna_strand1 = ParametricFunction(

31 lambda t: np.array([

3

32 0.3 * np.cos(2 * PI * t),

33 0.8 * t - 0.4,

34 0

35]),

36 t_range=[0, 1],

37 color=RED

38)

39 dna_strand2 = ParametricFunction(

40 lambda t: np.array([

41 -0.3 * np.cos(2 * PI * t),

42 0.8 * t - 0.4,

43 0

44]),

45 t_range=[0, 1],

46 color=RED

47)

48 problematic_dna = VGroup(dna_strand1, dna_strand2)

49

50 # Create text labels

51 cell_label = Tex("$\\textbf{Cell}$", font_size=28, color=BLUE).next_to(cell, DOWN, buff=0.3)

52 problematic_dna_label = Tex("\\textbf{Problematic \\\\DNA}", font_size=24,

color=RED).next_to(problematic_dna, RIGHT, buff=0.7),!

53

54 # Display cell, nucleus, problematic DNA, and labels at the start

55 self.add(cell, nucleus, problematic_dna, cell_label, problematic_dna_label)

56 self.wait(2)

57

58 # Create fixed DNA (green double helix)

59 fixed_strand1 = ParametricFunction(

60 lambda t: np.array([

61 0.3 * np.cos(2 * PI * t),

62 0.8 * t - 0.4,

63 0

64]),

65 t_range=[0, 1],

66 color=GREEN

67)

68 fixed_strand2 = ParametricFunction(

69 lambda t: np.array([

70 -0.3 * np.cos(2 * PI * t),

71 0.8 * t - 0.4,

72 0

73]),

74 t_range=[0, 1],

75 color=GREEN

76)

77 fixed_dna = VGroup(fixed_strand1, fixed_strand2)

78

79 # Create fixed DNA label

80 fixed_dna_label = Tex("\\textbf{Fixed \\\\DNA}", font_size=24, color=GREEN).next_to(fixed_dna,

RIGHT, buff=1.0),!

81

82 # Flash effect

83 flash = Flash(problematic_dna.get_center(), color=YELLOW, flash_radius=0.8)

84

85 # Morph DNA to green with pop effect and morph the label

86 self.play(

87 Transform(problematic_dna, fixed_dna),

88 Transform(problematic_dna_label, fixed_dna_label),

89 flash,

90 problematic_dna.animate.scale(1.3).set_color(GREEN)

91)

92 self.play(problematic_dna.animate.scale(1/1.3))

93 self.wait(2)

4

94

95 class Scene3_NoPassing(Scene):

96 """Scene: No Passing"""

97 def construct(self):

98 # Start with the ending status of Scene 2

99 cell = Circle(radius=2.5, color=BLUE, stroke_width=3, fill_color=BLUE, fill_opacity=0.3)

100 nucleus = Circle(radius=0.9, color=PURPLE, stroke_width=3, fill_color=PURPLE,

fill_opacity=0.35),!

101

102 # Fixed DNA (green double helix)

103 dna_strand1 = ParametricFunction(

104 lambda t: np.array([

105 0.3 * np.cos(2 * PI * t),

106 0.8 * t - 0.4,

107 0

108]),

109 t_range=[0, 1],

110 color=GREEN

111)

112 dna_strand2 = ParametricFunction(

113 lambda t: np.array([

114 -0.3 * np.cos(2 * PI * t),

115 0.8 * t - 0.4,

116 0

117]),

118 t_range=[0, 1],

119 color=GREEN

120)

121 fixed_dna = VGroup(dna_strand1, dna_strand2)

122

123 # Create labels

124 cell_label = Tex("$\\textbf{Cell}$", font_size=28, color=BLUE).next_to(cell, DOWN, buff=0.3)

125 fixed_dna_label = Tex("\\textbf{Fixed \\\\DNA}", font_size=24, color=GREEN).next_to(fixed_dna,

RIGHT, buff=1.0),!

126

127 # Group the cell components

128 cell_group = VGroup(cell, nucleus, fixed_dna)

129

130 # Add everything at the start

131 self.add(cell_group, cell_label, fixed_dna_label)

132

133 # Fade out the text labels

134 self.play(FadeOut(cell_label), FadeOut(fixed_dna_label), run_time=0.25)

135

136 # Create stick figures

137 # Parent (taller, on the left)

138 parent_head = Circle(radius=0.3, color=WHITE, stroke_width=2)

139 parent_body = Line(start=ORIGIN, end=DOWN * 1.5, color=WHITE, stroke_width=2)

140 parent_arms = Line(start=LEFT * 0.5, end=RIGHT * 0.5, color=WHITE, stroke_width=2)

141 parent_legs = VGroup(

142 Line(start=ORIGIN, end=DOWN * 0.8 + LEFT * 0.4, color=WHITE, stroke_width=2),

143 Line(start=ORIGIN, end=DOWN * 0.8 + RIGHT * 0.4, color=WHITE, stroke_width=2)

144)

145

146 parent = VGroup(parent_head, parent_body, parent_arms, parent_legs)

147 parent_head.next_to(parent_body.get_start(), UP, buff=0.1)

148 parent_arms.next_to(parent_body.get_start(), DOWN, buff=0.3)

149 parent_legs.next_to(parent_body.get_end(), DOWN, buff=0)

150

151 parent.move_to(LEFT * 3 + DOWN * 0.5)

152 parent_label = Tex("\\textbf{Parent}", font_size=24, color=WHITE).next_to(parent, DOWN,

buff=0.3),!

153

154 # Child (shorter, on the right)

5

155 child_head = Circle(radius=0.25, color=WHITE, stroke_width=2)

156 child_body = Line(start=ORIGIN, end=DOWN * 1.0, color=WHITE, stroke_width=2)

157 child_arms = Line(start=LEFT * 0.4, end=RIGHT * 0.4, color=WHITE, stroke_width=2)

158 child_legs = VGroup(

159 Line(start=ORIGIN, end=DOWN * 0.6 + LEFT * 0.3, color=WHITE, stroke_width=2),

160 Line(start=ORIGIN, end=DOWN * 0.6 + RIGHT * 0.3, color=WHITE, stroke_width=2)

161)

162

163 child = VGroup(child_head, child_body, child_arms, child_legs)

164 child_head.next_to(child_body.get_start(), UP, buff=0.1)

165 child_arms.next_to(child_body.get_start(), DOWN, buff=0.2)

166 child_legs.next_to(child_body.get_end(), DOWN, buff=0)

167

168 child.move_to(RIGHT * 3 + DOWN * 0.3)

169 child_label = Tex("\\textbf{Child}", font_size=24, color=WHITE).next_to(child, DOWN, buff=0.3)

170

171 # Fade in stick figures and their labels

172 self.play(

173 FadeIn(parent), FadeIn(parent_label),

174 FadeIn(child), FadeIn(child_label),

175 cell_group.animate.scale(0.3).shift(parent.get_center() + RIGHT * 1.2),

176 run_time=1

177)

178

179 # Move cell next to parent

180 self.play(cell_group.animate.move_to(parent.get_center() + RIGHT * 1.2), run_time=0.5)

181 self.wait(0.25)

182

183 # Draw arrow from left to right

184 arrow = Arrow(

185 start=LEFT * 1.5,

186 end=RIGHT * 1.5,

187 color=YELLOW,

188 buff=0,

189 stroke_width=6

190).move_to(DOWN * 0.5)

191 self.play(Create(arrow), run_time=0.25)

192

193 # Cell attempts to move along arrow but is stopped by red cross

194 # Create red cross in the middle

195 cross_line1 = Line(start=UP * 0.3 + LEFT * 0.3, end=DOWN * 0.3 + RIGHT * 0.3, color=RED,

stroke_width=8),!

196 cross_line2 = Line(start=UP * 0.3 + RIGHT * 0.3, end=DOWN * 0.3 + LEFT * 0.3, color=RED,

stroke_width=8),!

197 red_cross = VGroup(cross_line1, cross_line2).move_to(DOWN * 0.5)

198

199 # Animate cell moving and being stopped

200 self.play(

201 cell_group.animate.move_to(cell_group.get_center() + RIGHT * 1.5),

202 run_time=1,

203 rate_func=rush_into

204)

205

206 # Show red cross appearing and cell bouncing back slightly

207 self.play(Create(red_cross), cell_group.animate.shift(LEFT * 0.3), run_time=0.5)

208 self.wait(2)

application eyes.py

This �le contains code for creating animations about gene therapy applications for eye diseases, speci�cally
Luxturna treatment for Leber's Congenital Amaurosis (LCA).

6

1 from manim import *

2

3 # APPLICATION - EYES SCENES

4

5 class Scene4_Chapter1Title(Scene):

6 """Chapter Title: Application - Eyes"""

7 def construct(self):

8 # Text animation

9 chapter = Tex("{\\scshape\\bfseries CHAPTER I}", font_size=50, color=YELLOW)

10 title = Tex("{\\bfseries Genetic Blindness}", font_size=64, color=YELLOW)

11 separator = Line(start=LEFT * 3, end=RIGHT * 3, color=ORANGE, stroke_width=4)

12

13 chapter.move_to(UP * 0.75)

14 title.move_to(DOWN * 0.75)

15 separator.move_to(ORIGIN)

16

17 self.play(

18 Write(chapter, run_time=1.5),

19 Create(separator, run_time=1.5),

20 Write(title, run_time=1.5)

21)

22

23 self.wait(3)

24

25 class Scene5_LuxturnaAndLCATitle(Scene):

26 """Title: Luxturna and LCA"""

27 def construct(self):

28 # Text animation

29 title = Tex("{\\bfseries Luxturna}", font_size=64, color=BLUE)

30 subtitle = Tex("A gene therapy for", font_size=36)

31 disease = Tex("{\\bfseries Leber Congenital Amaurosis (LCA)}", font_size=40, color=RED)

32

33 title.move_to(UP * 1)

34 subtitle.move_to(DOWN * 0.2)

35 disease.move_to(DOWN * 0.8)

36

37 self.play(Write(title, run_time=0.75))

38 self.wait(3)

39 self.play(Write(subtitle), Write(disease), run_time=0.75)

40

41 self.wait(3)

42

43 class Scene6_LuxturnaPacking(Scene):

44 """Luxturna Packing Animation"""

45 def construct(self):

46 scene_title = Tex("{\\bfseries Luxturna Mechanism}", font_size=48, color=YELLOW)

47 scene_title.move_to(UP * 3)

48 self.play(Write(scene_title), run_time=1)

49 self.wait(0.5)

50

51 # 1. Create cDNA (green single strand) on the left

52 cdna = ParametricFunction(

53 lambda t: np.array([

54 0.2 * np.sin(4 * PI * t),

55 2 * t - 1,

56 0

57]),

58 t_range=[0, 1],

59 color=GREEN,

60 stroke_width=6

61)

62

7

63 cdna_label1 = Tex("\\textbf{cDNA}", font_size=28, color=GREEN)

64 cdna_label2 = Tex("\\textbf{(functional RPE65)}", font_size=24, color=GREEN)

65 cdna_labels = VGroup(cdna_label1, cdna_label2).arrange(DOWN, buff=0.2)

66

67 cdna.move_to(LEFT * 4)

68 cdna_labels.next_to(cdna, DOWN, buff=0.5)

69

70 # 2. Create AAV viral vector (purple capsid) on the right

71 # Represent as a hexagonal/circular capsid with inner space

72 aav_capsid = RegularPolygon(n=6, radius=1.2, color=PURPLE, stroke_width=4, fill_color=PURPLE,

fill_opacity=0.2),!

73

74 # Add spike proteins around the capsid

75 spike_positions = [

76 UP * 1.2,

77 UP * 0.6 + RIGHT * 1.0,

78 DOWN * 0.6 + RIGHT * 1.0,

79 DOWN * 1.2,

80 DOWN * 0.6 + LEFT * 1.0,

81 UP * 0.6 + LEFT * 1.0

82]

83

84 spikes = VGroup()

85 for pos in spike_positions:

86 spike = Triangle(color=PURPLE, fill_color=PURPLE, fill_opacity=0.8)

87 spike.scale(0.15)

88 spike.move_to(pos)

89 # Point spike outward from center

90 angle = np.arctan2(pos[1], pos[0])

91 spike.rotate(angle + PI/2)

92 spikes.add(spike)

93

94 aav_vector = VGroup(aav_capsid, spikes)

95

96 aav_label = Tex("\\textbf{AAV therapeutic\\\\vector}", font_size=28, color=PURPLE)

97

98 aav_vector.move_to(RIGHT * 4)

99 aav_label.next_to(aav_vector, DOWN, buff=0.5)

100

101 # Display both components

102 self.play(

103 Create(cdna),

104 Write(cdna_labels),

105 run_time=0.7

106)

107 self.wait(1.5)

108 self.play(

109 Create(aav_vector),

110 Write(aav_label),

111 run_time=0.7

112)

113 self.wait(2)

114

115 # 3. Move cDNA into the viral vector

116 # Scale down cDNA to fit inside

117 self.play(

118 cdna.animate.scale(0.4).move_to(aav_vector.get_center()),

119 FadeOut(cdna_labels),

120 run_time=1

121)

122 self.wait(0.5)

123

124 # Group the combination

125 aav_with_cdna = VGroup(aav_vector, cdna)

8

126

127 # 4. Zoom and move to center, transform label

128 aav_new_label = Tex("\\textbf{AAV2 serotype}", font_size=32, color=PURPLE)

129 aav_new_label.move_to(DOWN * 2.5)

130

131 self.play(

132 aav_with_cdna.animate.scale(1.5).move_to(ORIGIN),

133 Transform(aav_label, aav_new_label),

134 run_time=1

135)

136 self.wait(3)

137

138 class Scene7_LuxturnaInjection(Scene):

139 """Luxturna Injection Animation"""

140 def construct(self):

141 scene_title = Tex("{\\bfseries Luxturna Mechanism}", font_size=48, color=YELLOW)

142 scene_title.move_to(UP * 3)

143 self.add(scene_title)

144

145 # 1. Start from where Scene 6 ended - recreate the AAV2 with cDNA at center

146 aav_capsid = RegularPolygon(n=6, radius=1.2, color=PURPLE, stroke_width=4, fill_color=PURPLE,

fill_opacity=0.2),!

147

148 spike_positions = [

149 UP * 1.2,

150 UP * 0.6 + RIGHT * 1.0,

151 DOWN * 0.6 + RIGHT * 1.0,

152 DOWN * 1.2,

153 DOWN * 0.6 + LEFT * 1.0,

154 UP * 0.6 + LEFT * 1.0

155]

156

157 spikes = VGroup()

158 for pos in spike_positions:

159 spike = Triangle(color=PURPLE, fill_color=PURPLE, fill_opacity=0.8)

160 spike.scale(0.15)

161 spike.move_to(pos)

162 angle = np.arctan2(pos[1], pos[0])

163 spike.rotate(angle + PI/2)

164 spikes.add(spike)

165

166 aav_vector = VGroup(aav_capsid, spikes)

167

168 cdna = ParametricFunction(

169 lambda t: np.array([

170 0.2 * np.sin(4 * PI * t),

171 2 * t - 1,

172 0

173]),

174 t_range=[0, 1],

175 color=GREEN,

176 stroke_width=6

177).scale(0.4)

178

179 aav_with_cdna = VGroup(aav_vector, cdna).scale(1.5).move_to(ORIGIN)

180 aav_label = Tex("\\textbf{AAV2 serotype}", font_size=32, color=PURPLE).move_to(DOWN * 2.5)

181

182 self.add(aav_with_cdna, aav_label)

183

184 # 2. Zoom out AAV2 and move to left, create impaired cell on right-center

185 self.play(

186 aav_with_cdna.animate.scale(0.5).move_to(LEFT * 4),

187 FadeOut(aav_label),

188 run_time=1

9

189)

190

191 # Create cell with impaired DNA (red) in nucleus

192 cell = Circle(radius=2, color=BLUE, stroke_width=3, fill_color=BLUE, fill_opacity=0.1)

193 nucleus = Circle(radius=0.8, color=PURPLE, stroke_width=3, fill_color=PURPLE,

fill_opacity=0.15),!

194

195 # Impaired DNA (red)

196 impaired_dna = ParametricFunction(

197 lambda t: np.array([

198 0.2 * np.sin(4 * PI * t),

199 0.6 * t - 0.3,

200 0

201]),

202 t_range=[0, 1],

203 color=RED,

204 stroke_width=4

205)

206

207 cell_group = VGroup(cell, nucleus, impaired_dna)

208 cell_group.move_to(RIGHT * 1.5)

209

210 # Add cell label for impaired state

211 cell_label = Tex("\\textbf{Cell (impaired DNA)}", font_size=32, color=RED)

212 cell_label.next_to(cell_group, DOWN, buff=0.3)

213

214 self.play(Create(cell_group), Write(cell_label), run_time=1)

215

216 # 3. Vector moves towards cell and releases cDNA

217 self.play(

218 aav_with_cdna.animate.move_to(cell.get_left() + LEFT * 0.5),

219 run_time=1.2

220)

221

222 # Extract and scale up the cDNA for delivery

223 cdna_delivery = cdna.copy().scale(2)

224

225 # Create fixed cell label

226 fixed_cell_label = Tex("\\textbf{Cell (fixed DNA)}", font_size=32, color=GREEN)

227 fixed_cell_label.next_to(cell_group, DOWN, buff=0.3)

228

229 self.play(

230 cdna_delivery.animate.move_to(nucleus.get_center()),

231 impaired_dna.animate.set_color(GREEN),

232 Transform(cell_label, fixed_cell_label),

233 run_time=1.5

234)

235

236 # Remove the delivery cDNA and keep the transformed one

237 self.remove(cdna_delivery)

238

239 # 4. Vector fades out, cell moves to center and zooms slightly

240 self.play(FadeOut(aav_with_cdna), run_time=0.5)

241

242 self.play(

243 cell_group.animate.scale(0.9).move_to(ORIGIN),

244 cell_label.animate.next_to(ORIGIN + DOWN * 2, DOWN, buff=0),

245 run_time=1

246)

247

248 # 5. Cell produces functional retinoid isomerase (blue hexagons)

249 enzyme_label = Tex("\\textbf{Functional Retinoid\\\\Isomerase (RPE65)}", font_size=32,

color=BLUE),!

250 enzyme_label.move_to(DOWN * 3)

10

251

252 # Create enzymes with fixed random positions

253 enzyme_positions = [

254 UP * 2 + LEFT * 5,

255 UP * 1.5 + RIGHT * 5.5,

256 UP * 0.5 + LEFT * 6,

257 DOWN * 0.8 + RIGHT * 6,

258 DOWN * 2 + LEFT * 5.5,

259 DOWN * 2.5 + RIGHT * 4.5,

260 UP * 2.8 + LEFT * 2,

261 UP * 2.5 + RIGHT * 3,

262 DOWN * 3 + LEFT * 3,

263 DOWN * 2.8 + RIGHT * 2.5,

264 UP * 1 + LEFT * 3.5,

265 DOWN * 1.5 + LEFT * 4

266]

267

268 enzymes = VGroup()

269 animations = []

270

271 for i, pos in enumerate(enzyme_positions):

272 enzyme = RegularPolygon(n=6, radius=0.15, color=BLUE, fill_color=BLUE, fill_opacity=0.7)

273 enzyme.move_to(cell.get_center())

274 enzymes.add(enzyme)

275

276 # Stagger the animations slightly

277 animations.append(

278 AnimationGroup(

279 enzyme.animate.move_to(pos),

280 lag_ratio=0.1

281)

282)

283

284 self.add(enzymes)

285

286 # Animate enzymes leaving the cell

287 self.play(

288 LaggedStart(*[enzyme.animate.move_to(pos) for enzyme, pos in zip(enzymes,

enzyme_positions)],,!

289 lag_ratio=0.08),

290 Write(enzyme_label),

291 run_time=2.8

292)

293

294 self.wait(2)

295

296 class Scene8_ClinicalResultsEyes(Scene):

297 """Clinical Results Text"""

298 def construct(self):

299 # Title

300 title = Tex("{\\bfseries Clinical Results}", font_size=56, color=YELLOW)

301 title.move_to(UP * 2.5)

302

303 # Result statements

304 result1 = Tex("$\\bullet$ Significant improvements in retinal function", font_size=32)

305 result2 = Tex("$\\bullet$ Increased light sensitivity", font_size=32)

306 result3 = Tex("$\\bullet$ Enhanced pupillary responses", font_size=32)

307 result4 = Tex("$\\bullet$ Improved vision in dim environments", font_size=32, color=GREEN)

308

309 results = VGroup(result1, result2, result3, result4).arrange(DOWN, buff=0.5,

aligned_edge=LEFT),!

310 results.move_to(DOWN * 0.5)

311

312 # Animate title

11

313 self.play(Write(title), run_time=1)

314 self.wait(0.5)

315

316 # Animate results appearing one by one

317 self.play(FadeIn(result1, shift=UP * 0.3), run_time=0.8)

318 self.wait(0.3)

319 self.play(FadeIn(result2, shift=UP * 0.3), run_time=0.8)

320 self.wait(0.3)

321 self.play(FadeIn(result3, shift=UP * 0.3), run_time=0.8)

322 self.wait(0.3)

323 self.play(FadeIn(result4, shift=UP * 0.3), run_time=0.8)

324

325 self.wait(3)

application blood disorder.py

This �le contains code for creating animations about gene therapy applications for blood disorders, speci�cally
CRISPR treatment for sickle cell disease.

1 from manim import *

2

3 # BLOOD DISORDER APPLICATION SCENES

4

5 class Scene9_Chapter2Title(Scene):

6 """Chapter 2 Title: Gene Therapy for Blood Disorders"""

7 def construct(self):

8 # Text animation

9 chapter = Tex("{\\scshape\\bfseries CHAPTER II}", font_size=50, color=YELLOW)

10 title = Tex("{\\bfseries Blood Disorders}", font_size=64, color=YELLOW)

11 separator = Line(start=LEFT * 3, end=RIGHT * 3, color=ORANGE, stroke_width=4)

12

13 chapter.move_to(UP * 0.75)

14 title.move_to(DOWN * 0.75)

15 separator.move_to(ORIGIN)

16

17 self.play(

18 Write(chapter, run_time=1.5),

19 Create(separator, run_time=1.5),

20 Write(title, run_time=1.5)

21)

22

23 self.wait(3)

24

25 class Scene10_SickleCellDiseaseTitle(Scene):

26 """Sickle Cell Disease Title Scene"""

27 def construct(self):

28 # Text animation

29 title = Tex("{\\bfseries Sickle Cell Disease}", font_size=72, color=YELLOW)

30

31 self.play(Write(title, run_time=1))

32

33 self.wait(3)

34

35 class Scene11_CRISPRTreatment(Scene):

36 """CRISPR-Cas9 Treatment for Sickle Cell Disease"""

37 def construct(self):

38 # Part 1: Show BCL11A gene suppressing fetal hemoglobin

39 bcl11a_gene = Rectangle(width=2, height=0.8, color=RED, fill_color=RED, fill_opacity=0.3)

40 bcl11a_label = Tex("\\textbf{BCL11A\\\\gene}", font_size=24, color=RED)

41 bcl11a_label.next_to(bcl11a_gene, UP, buff=0.3)

42

43 bcl11a_group = VGroup(bcl11a_gene, bcl11a_label)

12

44 bcl11a_group.move_to(UP * 2 + LEFT * 3)

45

46 # Fetal hemoglobin (suppressed, shown as small gray circles)

47 fetal_hb_suppressed = VGroup(*[

48 Circle(radius=0.15, color=GRAY, fill_color=GRAY, fill_opacity=0.4)

49 for _ in range(3)

50]).arrange(RIGHT, buff=0.3)

51 fetal_hb_suppressed.move_to(DOWN * 1 + LEFT * 3)

52

53 fetal_label = Tex("\\textbf{Fetal Hb\\\\(suppressed)}", font_size=20, color=GRAY)

54 fetal_label.next_to(fetal_hb_suppressed, DOWN, buff=0.3)

55

56 # Suppression arrow

57 suppression_arrow = Arrow(

58 start=bcl11a_gene.get_bottom(),

59 end=fetal_hb_suppressed.get_top(),

60 color=RED,

61 stroke_width=6

62)

63

64 self.play(

65 Create(bcl11a_group),

66 Create(suppression_arrow),

67 Create(fetal_hb_suppressed),

68 Write(fetal_label),

69 run_time=1.5

70)

71 self.wait(1)

72

73 # Part 2: Show CRISPR-Cas9 coming in to edit BCL11A

74 crispr_cas9 = VGroup(

75 Rectangle(width=1.5, height=0.6, color=BLUE, fill_color=BLUE, fill_opacity=0.5),

76 Tex("\\textbf{CRISPR-\\\\Cas9}", font_size=20, color=BLUE)

77)

78 crispr_cas9[1].move_to(crispr_cas9[0].get_center())

79 crispr_cas9.move_to(UP * 2 + RIGHT * 2)

80

81 self.play(Create(crispr_cas9), run_time=1)

82 self.wait(0.5)

83

84 # CRISPR moves to BCL11A

85 self.play(crispr_cas9.animate.move_to(bcl11a_gene.get_center()), run_time=1.5)

86

87 # Flash effect showing gene editing

88 flash = Flash(bcl11a_gene.get_center(), color=YELLOW, flash_radius=1)

89 self.play(flash)

90

91 # BCL11A becomes deactivated (crossed out)

92 cross_line1 = Line(

93 start=bcl11a_gene.get_corner(UL),

94 end=bcl11a_gene.get_corner(DR),

95 color=YELLOW,

96 stroke_width=6

97)

98 cross_line2 = Line(

99 start=bcl11a_gene.get_corner(UR),

100 end=bcl11a_gene.get_corner(DL),

101 color=YELLOW,

102 stroke_width=6

103)

104

105 deactivated_label = Tex("\\textbf{BCL11A\\\\(deactivated)}", font_size=24, color=GRAY)

106 deactivated_label.move_to(bcl11a_label.get_center())

13

107

108 self.play(

109 Create(cross_line1),

110 Create(cross_line2),

111 Transform(bcl11a_label, deactivated_label),

112 FadeOut(crispr_cas9),

113 suppression_arrow.animate.set_color(GRAY).set_opacity(0.3),

114 run_time=1.5

115)

116 self.wait(1)

117

118 # Part 3: Fetal hemoglobin production resumes

119 fetal_hb_active = VGroup(*[

120 Circle(radius=0.2, color=GREEN, fill_color=GREEN, fill_opacity=0.7)

121 for _ in range(6)

122]).arrange_in_grid(rows=2, cols=3, buff=0.3)

123 fetal_hb_active.move_to(fetal_hb_suppressed.get_center() + DOWN * 0.5)

124

125 active_label = Tex("\\textbf{Fetal Hb\\\\(high-level)}", font_size=20, color=GREEN)

126 active_label.next_to(fetal_hb_active, DOWN, buff=0.3)

127

128 self.play(

129 Transform(fetal_hb_suppressed, fetal_hb_active),

130 Transform(fetal_label, active_label),

131 run_time=1.5

132)

133 self.wait(1)

134

135 # Part 4: Show effect on red blood cells

136 # Fade everything out

137 self.play(

138 FadeOut(bcl11a_group),

139 FadeOut(cross_line1),

140 FadeOut(cross_line2),

141 FadeOut(suppression_arrow),

142 FadeOut(fetal_hb_suppressed),

143 FadeOut(fetal_label),

144 run_time=1

145)

146

147 # 1. Create sickle cells and normal hemoglobin scattered across screen

148 # Sickle cells (red crescents)

149 sickle_positions = [

150 UP * 2.5 + LEFT * 4,

151 UP * 1.5 + LEFT * 1,

152 UP * 0.5 + LEFT * 5,

153 DOWN * 0.5 + LEFT * 2.5,

154 DOWN * 1.5 + LEFT * 5.5,

155 UP * 2 + RIGHT * 1,

156 DOWN * 2 + LEFT * 0.5,

157]

158

159 sickle_cells = VGroup()

160 for pos in sickle_positions:

161 arc1 = Arc(radius=0.3, angle=PI, color=RED, stroke_width=3, fill_color=RED,

fill_opacity=0.4),!

162 arc2 = Arc(radius=0.25, angle=-PI, color=RED, stroke_width=3, fill_color=RED,

fill_opacity=0.4).next_to(arc1, RIGHT, buff=0),!

163 sickle = VGroup(arc1, arc2).rotate(PI/4)

164 sickle.move_to(pos)

165 sickle_cells.add(sickle)

166

167 # Normal hemoglobin (green circles)

168 normal_hb_positions = [

14

169 UP * 3 + LEFT * 2,

170 UP * 1 + RIGHT * 4,

171 DOWN * 1 + RIGHT * 5,

172 DOWN * 2.5 + RIGHT * 2,

173 UP * 0.5 + RIGHT * 2,

174]

175

176 normal_hbs = VGroup()

177 for pos in normal_hb_positions:

178 normal_hb = Circle(radius=0.25, color=GREEN, fill_color=GREEN, fill_opacity=0.5,

stroke_width=3),!

179 normal_hb.move_to(pos)

180 normal_hbs.add(normal_hb)

181

182 # Legend at bottom left

183 legend_box = Rectangle(width=3.5, height=1.8, color=WHITE, stroke_width=2)

184 legend_box.move_to(DOWN * 2.7 + LEFT * 4.5)

185

186 # Legend items

187 sickle_legend_icon = VGroup(

188 Arc(radius=0.15, angle=PI, color=RED, stroke_width=2, fill_color=RED, fill_opacity=0.4),

189)

190 sickle_legend_icon[0].next_to(sickle_legend_icon[0], RIGHT, buff=0)

191 sickle_legend_label = Tex("Sickle Hb", font_size=18, color=RED)

192 sickle_legend = VGroup(sickle_legend_icon, sickle_legend_label).arrange(RIGHT, buff=0.3)

193

194 normal_legend_icon = Circle(radius=0.15, color=GREEN, fill_color=GREEN, fill_opacity=0.5,

stroke_width=2),!

195 normal_legend_label = Tex("Normal Hb", font_size=18, color=GREEN)

196 normal_legend = VGroup(normal_legend_icon, normal_legend_label).arrange(RIGHT, buff=0.3)

197

198 fetal_legend_icon = Circle(radius=0.15, color=BLUE, fill_color=BLUE, fill_opacity=0.5,

stroke_width=2),!

199 fetal_legend_label = Tex("Fetal Hb", font_size=18, color=BLUE)

200 fetal_legend = VGroup(fetal_legend_icon, fetal_legend_label).arrange(RIGHT, buff=0.3)

201

202 legend_items = VGroup(sickle_legend, normal_legend, fetal_legend).arrange(DOWN,

aligned_edge=LEFT, buff=0.2),!

203 legend_items.move_to(legend_box.get_center())

204

205 legend_group = VGroup(legend_box, legend_items)

206

207 # 2. Counter at bottom right showing functional hemoglobin percentage

208 counter_box = Rectangle(width=3, height=1.2, color=WHITE, stroke_width=2)

209 counter_box.move_to(DOWN * 2.9 + RIGHT * 4.5)

210

211 counter_label = Tex("\\textbf{Functional Hb}", font_size=20)

212 counter_label.move_to(counter_box.get_center() + UP * 0.3)

213

214 initial_percentage = int((len(normal_hbs) / (len(sickle_cells) + len(normal_hbs))) * 100)

215 counter_value = Tex(f"\\textbf{{{initial_percentage}\\%}}", font_size=32, color=YELLOW)

216 counter_value.move_to(counter_box.get_center() + DOWN * 0.25)

217

218 counter_group = VGroup(counter_box, counter_label, counter_value)

219

220 # Fade in everything

221 self.play(

222 Create(sickle_cells),

223 Create(normal_hbs),

224 Create(legend_group),

225 Create(counter_group),

226 run_time=1.5

227)

228 self.wait(1)

15

229

230 # 3. Fade in fetal hemoglobin (blue circles) and update counter

231 fetal_hb_positions = [

232 UP * 2.8 + RIGHT * 3.5,

233 UP * 0.8 + LEFT * 3.5,

234 UP * 1.8 + RIGHT * 5.5,

235 DOWN * 0.3 + RIGHT * 0.5,

236 DOWN * 1.8 + RIGHT * 4.5,

237 DOWN * 2.5 + LEFT * 3,

238 UP * 3.2 + LEFT * 0.5,

239 DOWN * 0.8 + LEFT * 4.5,

240]

241

242 fetal_hbs = VGroup()

243 for pos in fetal_hb_positions:

244 fetal_hb = Circle(radius=0.25, color=BLUE, fill_color=BLUE, fill_opacity=0.5,

stroke_width=3),!

245 fetal_hb.move_to(pos)

246 fetal_hbs.add(fetal_hb)

247

248 # Calculate new percentage

249 new_percentage = int((len(normal_hbs) + len(fetal_hbs)) / (len(sickle_cells) + len(normal_hbs)

+ len(fetal_hbs)) * 100),!

250 new_counter_value = Tex(f"\\textbf{{{new_percentage}\\%}}", font_size=32, color=GREEN)

251 new_counter_value.move_to(counter_value.get_center())

252

253 self.play(

254 FadeIn(fetal_hbs, lag_ratio=0.1),

255 Transform(counter_value, new_counter_value),

256 run_time=2

257)

258 self.wait(1.5)

259

260 # Final message

261 cure_text = Tex("\\textbf{Malfunctioned Haemoglobin Diluted}", font_size=40, color=WHITE)

262 cure_text_box = Rectangle(width=8, height=1, color=GREEN, stroke_width=3, fill_color=GREEN,

fill_opacity=0.3),!

263 cure_text.move_to(ORIGIN)

264

265 self.play(Create(cure_text_box), Write(cure_text), run_time=1)

266 self.wait(2)

application blood cancer.py

This �le contains code for creating animations about gene therapy applications for blood cancer, speci�cally
CAR-T cell therapy for leukemia and its side e�ects.

1 from manim import *

2 import random

3

4 # BLOOD CANCER APPLICATION SCENES

5

6 class Scene12_Chapter3Title(Scene):

7 """Chapter 3 Title: Leukaemia and Lymphoma"""

8 def construct(self):

9 # Text animation

10 chapter = Tex("{\\scshape\\bfseries CHAPTER III}", font_size=50, color=YELLOW)

11 title = Tex("{\\bfseries Leukaemia and Lymphoma}", font_size=64, color=YELLOW)

12 separator = Line(start=LEFT * 3, end=RIGHT * 3, color=ORANGE, stroke_width=4)

13

14 chapter.move_to(UP * 0.75)

15 title.move_to(DOWN * 0.75)

16

16 separator.move_to(ORIGIN)

17

18 self.wait(1) # for editing

19

20 self.play(

21 Write(chapter, run_time=1.5),

22 Create(separator, run_time=1.5),

23 Write(title, run_time=1.5)

24)

25

26 self.wait(3)

27

28 class Scene13_WBCDivision(Scene):

29 """White Blood Cell Division and Mutation Introduction Scene"""

30 def construct(self):

31 # Create initial white blood cell

32 initial_cell = Circle(radius=0.3, color=WHITE, fill_opacity=0.8, fill_color=WHITE,

stroke_width=2),!

33 initial_cell.move_to(ORIGIN)

34

35 # Store all cells in a list

36 cells = [initial_cell]

37

38 self.add(initial_cell)

39 self.wait(1)

40

41 # Division loop

42 max_cells = 100

43 division_interval = 0.15 # Time between divisions

44 cell_radius = 0.3

45

46 def find_non_overlapping_position(parent_pos, existing_cells, max_attempts=50):

47 """Find a position for new cell that doesn
t overlap with existing cells"""

48 for attempt in range(max_attempts):

49 angle = np.random.uniform(0, 2 * np.pi)

50 distance = cell_radius * 2.5 # Start at safe distance

51 offset = np.array([np.cos(angle), np.sin(angle), 0]) * distance

52 new_pos = parent_pos + offset

53

54 # Check if position is valid (not overlapping and within frame)

55 if abs(new_pos[0]) < config.frame_width / 2 - cell_radius and \

56 abs(new_pos[1]) < config.frame_height / 2 - cell_radius:

57

58 # Check overlap with existing cells

59 overlapping = False

60 for cell in existing_cells:

61 dist = np.linalg.norm(new_pos - cell.get_center())

62 if dist < cell_radius * 2.2: # Minimum safe distance

63 overlapping = True

64 break

65

66 if not overlapping:

67 return new_pos

68

69 # If no good position found, return random position with larger offset

70 angle = np.random.uniform(0, 2 * np.pi)

71 distance = cell_radius * 4

72 offset = np.array([np.cos(angle), np.sin(angle), 0]) * distance

73 return parent_pos + offset

74

75 while len(cells) < max_cells:

76 # Select a random cell to divide from all existing cells

77 if len(cells) > 0:

78 parent = random.choice(cells)

17

79 parent_pos = parent.get_center()

80

81 # Find positions for two daughter cells

82 pos1 = find_non_overlapping_position(parent_pos, cells)

83

84 # Create first daughter cell

85 new_cell1 = Circle(radius=cell_radius, color=WHITE, fill_opacity=0.8,

fill_color=WHITE, stroke_width=2),!

86 new_cell1.move_to(parent_pos)

87

88 # Temporarily add to list to check for second position

89 temp_cells = cells + [new_cell1]

90 pos2 = find_non_overlapping_position(parent_pos, temp_cells)

91

92 # Create second daughter cell

93 new_cell2 = Circle(radius=cell_radius, color=WHITE, fill_opacity=0.8,

fill_color=WHITE, stroke_width=2),!

94 new_cell2.move_to(parent_pos)

95

96 # Remove parent cell and add daughter cells

97 self.remove(parent)

98 cells.remove(parent)

99

100 cells.append(new_cell1)

101 cells.append(new_cell2)

102

103 self.add(new_cell1, new_cell2)

104

105 # Animate cells moving to their positions

106 self.play(

107 new_cell1.animate.move_to(pos1),

108 new_cell2.animate.move_to(pos2),

109 run_time=0.3,

110 rate_func=smooth

111)

112

113 if len(cells) >= max_cells:

114 break

115

116 self.wait(2)

117

118 class Scene14_CARTCellTherapy(Scene):

119 """CAR T-cell Therapy Process"""

120 def construct(self):

121 # Text animation

122 title = Tex("{\\bfseries CAR-T Cell Therapy}", font_size=72, color=YELLOW)

123

124 self.wait(2) # for editing

125

126 self.play(Write(title, run_time=1))

127

128 self.wait(3)

129

130 class Scene15_HighRateBut(Scene):

131 def construct(self):

132 # Text animation

133 text = Tex("\\textbf{High Remission Rate}", font_size=64, color=YELLOW)

134 text.move_to(UP * 0.5)

135 self.wait(1.5)

136 self.play(Write(text, run_time=1))

137 self.wait(1)

138

139 but_text = Tex("\\textbf{But...?}", font_size=64, color=RED)

140 but_text.move_to(DOWN * 0.5)

18

141 self.play(Write(but_text, run_time=1))

142 self.wait(2)

143

144 class Scene16_CytokineStorm(Scene):

145 """Cytokine Storm Explanation Scene"""

146 def construct(self):

147 # 1. T cell

148 t_cell = Circle(radius=0.5, color=BLUE, fill_color=BLUE, fill_opacity=0.5, stroke_width=3)

149 t_cell.move_to(UP * 2.5)

150 t_cell_label = Tex("\\textbf{T Cell}", font_size=24, color=BLUE).next_to(t_cell, DOWN,

buff=0.3),!

151 t_cell_group = VGroup(t_cell, t_cell_label)

152

153 # 2. Cancer Cell

154 cancer_cell = Circle(radius=0.5, color=RED, fill_color=RED, fill_opacity=0.5, stroke_width=3)

155 cancer_cell.move_to(DOWN * 2.5 + LEFT * 3)

156 cancer_cell_label = Tex("\\textbf{Cancer Cell}", font_size=24, color=RED).next_to(cancer_cell,

DOWN, buff=0.3),!

157 cancer_cell_group = VGroup(cancer_cell, cancer_cell_label)

158

159 # 3. Healthy Cell

160 healthy_cell = Circle(radius=0.5, color=GREEN, fill_color=GREEN, fill_opacity=0.5,

stroke_width=3),!

161 healthy_cell.move_to(DOWN * 2.5 + RIGHT * 3)

162 healthy_cell_label = Tex("\\textbf{Healthy Cell}", font_size=24,

color=GREEN).next_to(healthy_cell, DOWN, buff=0.3),!

163 healthy_cell_group = VGroup(healthy_cell, healthy_cell_label)

164

165 # arrows

166 arrow_to_cancer = Arrow(

167 start=t_cell_group.get_bottom(),

168 end=cancer_cell_group.get_top() + DOWN * 0.1,

169 color=YELLOW,

170 buff=0.5,

171 stroke_width=6

172)

173

174 arrow_to_healthy = Arrow(

175 start=t_cell_group.get_bottom(),

176 end=healthy_cell_group.get_top() + DOWN * 0.1,

177 color=YELLOW,

178 buff=0.5,

179 stroke_width=6

180)

181

182 # text

183 text = Tex("\\textbf{Cytokine Storm}", font_size=48, color=ORANGE)

184 text.next_to(arrow_to_healthy.get_center(), RIGHT, buff=1)

185

186 self.wait(1)

187 self.play(

188 Create(t_cell), Write(t_cell_label),

189 Create(cancer_cell), Write(cancer_cell_label),

190 Create(healthy_cell), Write(healthy_cell_label),

191 run_time=0.5

192)

193 self.wait(1)

194 self.play(Create(arrow_to_cancer), run_time=0.5)

195 self.play(Create(arrow_to_healthy), Write(text), run_time=0.5)

196

197 self.wait(3)

19

application neuromuscular.py

This �le contains code for creating animations about gene therapy applications for neuromuscular diseases,
speci�cally Nusinersen therapy for Spinal Muscular Atrophy (SMA).

1 from manim import *

2

3 # NEUROMUSCULAR DISEASE APPLICATION SCENES

4

5 class Scene17_Chapter4Title(Scene):

6 def construct(self):

7 # Text animation

8 chapter = Tex("{\\scshape\\bfseries CHAPTER IV}", font_size=50, color=YELLOW)

9 title = Tex("{\\bfseries Spinal Muscular Atrophy}", font_size=64, color=YELLOW)

10 separator = Line(start=LEFT * 3, end=RIGHT * 3, color=ORANGE, stroke_width=4)

11

12 chapter.move_to(UP * 0.75)

13 title.move_to(DOWN * 0.75)

14 separator.move_to(ORIGIN)

15

16 self.play(

17 Write(chapter, run_time=1.5),

18 Create(separator, run_time=1.5),

19 Write(title, run_time=1.5)

20)

21

22 self.wait(3)

23

24 class Scene18_BackupSMN2Gene(Scene):

25 def construct(self):

26 # title

27 title = Tex("\\textbf{SMN2 Gene As a Backup}", font_size=48, color=YELLOW)

28 title.move_to(UP * 3)

29 self.play(Write(title), run_time=1)

30 self.wait(1)

31

32 # A segment of SMN2 RNA, represented by two parallel wavy lines (sine waves)

33 x_start = -6

34 x_end = 6

35 amplitude = 0.3

36 frequency = 1

37 wave_func = lambda x: amplitude * np.sin(frequency * x)

38 smn2_rna = VGroup(

39 ParametricFunction(

40 lambda t: np.array([t, wave_func(t) + 0.3, 0]),

41 t_range=[x_start, x_end],

42 color=BLUE,

43 stroke_width=4

44),

45 ParametricFunction(

46 lambda t: np.array([t, wave_func(t) - 0.3, 0]),

47 t_range=[x_start, x_end],

48 color=BLUE,

49 stroke_width=4

50)

51)

52 smn2_rna.scale(1.3)

53

54 smn2_label = Tex("\\textbf{SMN2 RNA}", font_size=32, color=BLUE).next_to(smn2_rna, UP,

buff=0.5),!

55 smn2_label.shift(LEFT * 1.7 + DOWN * 1)

56

57 self.add(smn2_rna)

20

58 self.play(Write(smn2_label), run_time=1)

59 self.wait(1)

60

61 # An error marker (red exclamation mark, with a circle around) pops on the RNA

62 exclamation_mark = Tex("!", font_size=56, color=RED)

63 error_circle = Circle(radius=0.3, color=RED, stroke_width=3)

64 error_marker = VGroup(error_circle, exclamation_mark).move_to(smn2_rna.get_center() + RIGHT *

2 + UP * 0.35),!

65 error_flash = Flash(error_marker.get_center(), color=YELLOW, flash_radius=0.4,

line_stroke_width=6),!

66

67 self.play(Create(error_marker), error_flash, run_time=1)

68 self.wait(1)

69

70 # two dashed lines to indicate splicing

71 splice_line1 = DashedLine(

72 start=smn2_rna[0].point_from_proportion(0.5),

73 end=smn2_rna[1].point_from_proportion(0.5),

74 color=WHITE,

75 stroke_width=4,

76 dash_length=0.06,

77 buff=0

78)

79 splice_line2 = DashedLine(

80 start=smn2_rna[0].point_from_proportion(0.8),

81 end=smn2_rna[1].point_from_proportion(0.8),

82 color=WHITE,

83 stroke_width=4,

84 dash_length=0.06,

85 buff=0

86)

87 exon7_text = Tex("\\textbf{Exon 7} \\\\excluded", font_size=28,

color=RED).next_to(splice_line2, RIGHT, buff=0.3),!

88 exon7_text.next_to(error_marker, DOWN, buff=0.2)

89 self.play(Create(splice_line1), Create(splice_line2), Write(exon7_text), run_time=1)

90 self.wait(1)

91

92 # arrow down

93 arrow = Arrow(

94 start=splice_line1.get_bottom() + DOWN * 0.2,

95 end=splice_line1.get_bottom() + DOWN * 1.2,

96 color=YELLOW,

97 buff=0,

98 stroke_width=6

99)

100

101 # 3/4 circle to represent truncated protein

102 truncated_protein = Arc(

103 radius=0.4,

104 start_angle=PI / 4,

105 angle=3 * PI / 2,

106 color=ORANGE,

107 stroke_width=6

108).move_to(arrow.get_end() + DOWN * 0.5)

109 truncated_label = Tex("\\textbf{Truncated SMN Protein}", font_size=28,

color=ORANGE).next_to(truncated_protein, DOWN, buff=0.3),!

110

111 self.play(

112 Create(arrow),

113 Write(truncated_label),

114 Create(truncated_protein),

115 run_time=1

116)

117 self.wait(1)

21

118

119 class Scene19_NusinersenTherapy(Scene):

120 def construct(self):

121 # recreate the ending state of Scene 18

122 # title

123 title = Tex("\\textbf{SMN2 Gene As a Backup}", font_size=48, color=YELLOW)

124 title.move_to(UP * 3)

125 self.add(title)

126

127 # SMN2 RNA

128 x_start = -6

129 x_end = 6

130 amplitude = 0.3

131 frequency = 1

132 wave_func = lambda x: amplitude * np.sin(frequency * x)

133 smn2_rna = VGroup(

134 ParametricFunction(

135 lambda t: np.array([t, wave_func(t) + 0.3, 0]),

136 t_range=[x_start, x_end],

137 color=BLUE,

138 stroke_width=4

139),

140 ParametricFunction(

141 lambda t: np.array([t, wave_func(t) - 0.3, 0]),

142 t_range=[x_start, x_end],

143 color=BLUE,

144 stroke_width=4

145)

146)

147 smn2_rna.scale(1.3)

148 smn2_label = Tex("\\textbf{SMN2 RNA}", font_size=32, color=BLUE).next_to(smn2_rna, UP,

buff=0.5),!

149 smn2_label.shift(LEFT * 1.7 + DOWN * 1)

150 self.add(smn2_rna, smn2_label)

151

152 # error marker

153 exclamation_mark = Tex("!", font_size=56, color=RED)

154 error_circle = Circle(radius=0.3, color=RED, stroke_width=3)

155 error_marker = VGroup(error_circle, exclamation_mark).move_to(smn2_rna.get_center() + RIGHT *

2 + UP * 0.35),!

156 self.add(error_marker)

157

158 # splice lines

159 splice_line1 = DashedLine(

160 start=smn2_rna[0].point_from_proportion(0.5),

161 end=smn2_rna[1].point_from_proportion(0.5),

162 color=WHITE,

163 stroke_width=4,

164 dash_length=0.06,

165 buff=0

166)

167 splice_line2 = DashedLine(

168 start=smn2_rna[0].point_from_proportion(0.8),

169 end=smn2_rna[1].point_from_proportion(0.8),

170 color=WHITE,

171 stroke_width=4,

172 dash_length=0.06,

173 buff=0

174)

175 exon7_text = Tex("\\textbf{Exon 7} \\\\excluded", font_size=28,

color=RED).next_to(splice_line2, RIGHT, buff=0.3),!

176 exon7_text.next_to(error_marker, DOWN, buff=0.2)

177 self.add(splice_line1, splice_line2, exon7_text)

178

22

179 # arrow

180 arrow = Arrow(

181 start=splice_line1.get_bottom() + DOWN * 0.2,

182 end=splice_line1.get_bottom() + DOWN * 1.2,

183 color=YELLOW,

184 buff=0,

185 stroke_width=6

186)

187 self.add(arrow)

188

189 # truncated protein

190 truncated_protein = Arc(

191 radius=0.4,

192 start_angle=PI / 4,

193 angle=3 * PI / 2,

194 color=ORANGE,

195 stroke_width=6

196).move_to(arrow.get_end() + DOWN * 0.5)

197 truncated_label = Tex("\\textbf{Truncated SMN Protein}", font_size=28,

color=ORANGE).next_to(truncated_protein, DOWN, buff=0.3),!

198 self.add(truncated_protein, truncated_label)

199

200 self.wait(1)

201

202 #### NEW SCENE

203

204 new_title = Tex("\\textbf{Nusinersen Therapy}", font_size=48, color=YELLOW)

205 new_title.move_to(UP * 3)

206 self.play(

207 Transform(title, new_title),

208 FadeOut(exon7_text),

209 FadeOut(splice_line1), FadeOut(splice_line2),

210 run_time=1

211)

212

213 # Proofreader (a purple oval)

214 proofreader = Ellipse(width=1.8, height=1.3, color=PURPLE, fill_color=PURPLE,

fill_opacity=0.5, stroke_width=3),!

215 proofreader_label = Tex("\\textbf{Nusinersen}", font_size=32, color=WHITE)

216 proofreader_label.move_to(proofreader.get_center())

217 proofreader_group = VGroup(proofreader, proofreader_label)

218 # move out of screen on the right

219 proofreader_group.move_to(error_marker.get_center() + RIGHT * 8 + UP * 0.5)

220

221 # animate proofreader moving to the error site

222 self.play(

223 proofreader_group.animate.move_to(error_marker.get_center() + UP * 0.5),

224 run_time=1

225)

226 # animate proofreader fixing the error

227 self.play(

228 FadeOut(error_marker),

229 Flash(error_marker.get_center(), color=GREEN, flash_radius=0.4, line_stroke_width=6),

230 run_time=1

231)

232 self.wait(1)

233

234 # fixed protein

235 fixed_protein = Circle(radius=0.4, color=GREEN, stroke_width=6)

236 fixed_label = Tex("\\textbf{Full-length SMN Protein}", font_size=28, color=GREEN)

237 fixed_protein.move_to(truncated_protein.get_center())

238 fixed_label.move_to(truncated_label.get_center())

239

240 # animate splicing and protein change

23

241 self.play(

242 Transform(truncated_protein, fixed_protein),

243 Transform(truncated_label, fixed_label),

244 run_time=1

245)

246

247 self.wait(2)

ethics.py

This �le contains code for creating animations about ethical considerations in gene therapy, including historical
cases, public opinion, and regulatory concerns.

1 from manim import *

2 import random

3

4 # ETHICAL DISCUSSION SCENES

5

6 class Scene20_EthicalTitle(Scene):

7 """Chapter Title: Ethical Considerations"""

8 def construct(self):

9 # Text animation

10 chapter = Tex("{\\scshape\\bfseries CHAPTER V}", font_size=50, color=YELLOW)

11 title = Tex("{\\bfseries Gene Therapy Ethics}", font_size=64, color=YELLOW)

12 separator = Line(start=LEFT * 3, end=RIGHT * 3, color=ORANGE, stroke_width=4)

13

14 chapter.move_to(UP * 0.75)

15 title.move_to(DOWN * 0.75)

16 separator.move_to(ORIGIN)

17

18 self.play(

19 Write(chapter, run_time=1.5),

20 Create(separator, run_time=1.5),

21 Write(title, run_time=1.5)

22)

23

24 self.wait(3)

25

26 class Scene21_HumanWithQuestionMarks(Scene):

27 def construct(self):

28 # human svg

29 human = SVGMobject("./human_outline.svg", fill_color=BLUE, fill_opacity=0.3,

stroke_color=BLUE, stroke_width=2, should_center=True),!

30 human.scale(5)

31 human.move_to(DOWN*1.5)

32 self.play(Create(human), run_time=2)

33

34 # Create question marks with different properties

35 question_marks = []

36 colors = [RED, YELLOW, GREEN, PURPLE, ORANGE, PINK, TEAL]

37 positions = [

38 DOWN * 2 + LEFT * 3,

39 UP * 3 + RIGHT * 2,

40 LEFT * 4 + UP * 1,

41 RIGHT * 4 + UP * 0.5,

42 DOWN * 2.5 + RIGHT * 4,

43 LEFT * 3.5 + UP * 3,

44 RIGHT * 3 + DOWN * 3.5,

45 LEFT * 2 + UP * 1.5,

46 RIGHT * 2.5 + UP * 2,

47 LEFT * 5 + UP * 2.5,

48 RIGHT * 5 + UP * 1.5,

24

49 DOWN * 3.5 + LEFT * 1.5,

50]

51

52 # Predefined sizes for each question mark

53 sizes = [65, 72, 48, 55, 78, 43, 69, 51, 76, 58, 62, 71]

54

55 for i, (pos, color, size) in enumerate(zip(positions, colors * 2, sizes)):

56 qmark = Tex("?", font_size=size, color=color)

57 qmark.move_to(pos)

58 question_marks.append(qmark)

59

60 # Fade in question marks with lag

61 self.play(

62 LaggedStart(*[FadeIn(qmark) for qmark in question_marks],

63 lag_ratio=0.5,

64 run_time=6)

65)

66

67 # text

68 philosophical_text = Tex("$\\bullet$ Philosophical question?", font_size=50, color=WHITE)

69 medical_safety_text = Tex("$\\bullet$ Medical safety!", font_size=50, color=WHITE)

70

71 philosophical_text.move_to(DOWN * 2.6 + LEFT * 4)

72 medical_safety_text.next_to(philosophical_text, DOWN, aligned_edge=LEFT, buff=0.2)

73

74 self.play(Write(philosophical_text, run_time=1))

75 self.wait(0.5)

76 self.play(Write(medical_safety_text, run_time=1))

77 self.wait(3)

78

79 class Scene22_JesseGelsingerCaseTimeline(Scene):

80 def construct(self):

81 # Title

82 title = Tex("\\textbf{Jesse Gelsinger Case Timeline}", font_size=48, color=YELLOW)

83 title.move_to(UP * 3.5)

84 self.play(Write(title, run_time=0.5))

85 self.wait(0.5)

86

87 # Timeline arrow

88 timeline = Arrow(start=LEFT * 6 + UP * 3, end=LEFT * 6 + DOWN * 4, color=YELLOW,

stroke_width=4),!

89 self.play(Create(timeline), run_time=0.5)

90 self.wait(0.5)

91

92 # Events

93 events = [

94 ("{\\bfseries 18 Jun 1981:}", "Jesse Gelsinger born, later diagnosed with OTC

deficiency"),,!

95 ("{\\bfseries 13 Sept 1999:}", "At 18, Gelsinger injected with experimental gene

therapy"),,!

96 ("{\\bfseries 17 Sept 1999:}", "Gelsinger died from organ failure due to immune

response"),,!

97]

98

99 for i, event_text in enumerate(events):

100 event = VGroup(

101 Tex(event_text[0], font_size=28, color=WHITE),

102 Tex(event_text[1], font_size=32, color=WHITE)

103)

104 event.arrange(DOWN, aligned_edge=LEFT)

105 x_pos = LEFT * 6

106 y_pos = UP * 2 + (DOWN * 4) * (i / (len(events) - 1))

107 marker = Dot(point=x_pos + y_pos, color=RED, radius=0.1)

108 event.next_to(marker, RIGHT, buff=0.3)

25

109 self.play(Create(marker), Write(event, run_time=1))

110 self.wait(0.5)

111

112 self.wait(3)

113

114 class Scene23_BubbleBoy(Scene):

115 def construct(self):

116 # Create 4 stick figures in blue bubbles arranged in 2x2 grid

117 stick_figures = []

118 bubbles = []

119

120 # Positions for 2x2 grid

121 positions = [

122 UP * 1.5 + LEFT * 2, # Top left

123 UP * 1.5 + RIGHT * 2, # Top right

124 DOWN * 1.5 + LEFT * 2, # Bottom left

125 DOWN * 1.5 + RIGHT * 2 # Bottom right

126]

127

128 for pos in positions:

129 # Create stick figure

130 stick = VGroup(

131 Circle(radius=0.15, color=WHITE, fill_opacity=1), # Head

132 Line(start=UP * 0.25, end=DOWN * 0.5, color=WHITE), # Body

133 Line(start=UP * 0.25, end=DOWN * 0.15 + LEFT * 0.25, color=WHITE), # Left arm

134 Line(start=UP * 0.25, end=DOWN * 0.15 + RIGHT * 0.25, color=WHITE), # Right arm

135 Line(start=DOWN * 0.5, end=DOWN * 0.8 + LEFT * 0.2, color=WHITE), # Left leg

136 Line(start=DOWN * 0.5, end=DOWN * 0.8 + RIGHT * 0.2, color=WHITE), # Right leg

137)

138 stick[0].move_to(UP * 0.4)

139 stick.scale(0.8)

140 stick.move_to(pos)

141

142 # Create bubble

143 bubble = Circle(radius=1.2, color=BLUE, stroke_width=4, fill_opacity=0.3, fill_color=BLUE)

144 bubble.move_to(pos)

145

146 stick_figures.append(stick)

147 bubbles.append(bubble)

148

149 # Show all stick figures and blue bubbles

150 self.play(

151 *[Create(bubble) for bubble in bubbles],

152 *[Create(stick) for stick in stick_figures],

153 run_time=1

154)

155 self.wait(0.5)

156

157 # Change colors: bottom right to red, others to green

158 # Also create warning text for bottom right

159 warning_text = Tex("Accidental activation\\\\ of leukaemia (25\\%)", font_size=32, color=RED)

160 warning_text.next_to(bubbles[3], DOWN, buff=0.2)

161

162 self.play(

163 bubbles[3].animate.set_color(RED), # Bottom right to red

164 *[bubbles[i].animate.set_color(GREEN) for i in range(3)], # Others to green

165 Write(warning_text),

166 run_time=1

167)

168

169 self.wait(3)

170

171 class Scene24_ImmuneToGeneTherapy(Scene):

26

172 """Scene showing immune response to gene therapy"""

173 def construct(self):

174 # 1. Create green human outline on the right half

175 human = SVGMobject("./human_outline.svg", fill_color=GREEN, fill_opacity=0.3,

stroke_color=GREEN, stroke_width=3, should_center=True),!

176 human.scale(3)

177 human.move_to(RIGHT * 3)

178

179 # Create AAV viral vector with RNA strand (upper-left)

180 aav_capsid = RegularPolygon(n=6, radius=1.2, color=PURPLE, stroke_width=4, fill_color=PURPLE,

fill_opacity=0.2),!

181

182 spike_positions = [

183 UP * 1.2,

184 UP * 0.6 + RIGHT * 1.0,

185 DOWN * 0.6 + RIGHT * 1.0,

186 DOWN * 1.2,

187 DOWN * 0.6 + LEFT * 1.0,

188 UP * 0.6 + LEFT * 1.0

189]

190

191 spikes = VGroup()

192 for pos in spike_positions:

193 spike = Triangle(color=PURPLE, fill_color=PURPLE, fill_opacity=0.8)

194 spike.scale(0.15)

195 spike.move_to(pos)

196 angle = np.arctan2(pos[1], pos[0])

197 spike.rotate(angle + PI/2)

198 spikes.add(spike)

199

200 # RNA strand inside

201 rna_strand = ParametricFunction(

202 lambda t: np.array([

203 0.2 * np.sin(4 * PI * t),

204 1.5 * t - 0.75,

205 0

206]),

207 t_range=[0, 1],

208 color=GREEN,

209 stroke_width=6

210).scale(0.3)

211

212 aav_capsid.scale(0.5)

213 spikes.scale(0.5)

214 aav_vector = VGroup(aav_capsid, spikes, rna_strand)

215 aav_vector.move_to(UP * 2 + LEFT * 4)

216

217 # Create CRISPR-Cas9 protein (lower-left)

218 crispr_cas9 = VGroup(

219 Rectangle(width=1.5, height=0.6, color=BLUE, fill_color=BLUE, fill_opacity=0.5),

220 Tex("\\textbf{CRISPR-\\\\Cas9}", font_size=20, color=BLUE)

221)

222 crispr_cas9.scale(1.4)

223 crispr_cas9[1].move_to(crispr_cas9[0].get_center())

224 crispr_cas9.move_to(DOWN * 2 + LEFT * 4)

225

226 # Display all elements

227 self.play(

228 Create(human),

229 Create(aav_vector),

230 Create(crispr_cas9),

231 run_time=1

232)

233 self.wait(1)

27

234

235 # 2. Vector approaches human but is bounced back

236 target_pos = human.get_left() + LEFT * 0.5

237 self.play(

238 aav_vector.animate.move_to(target_pos),

239 run_time=1

240)

241 # self.wait(0.3)

242

243 # Bounce back with shake

244 self.play(

245 aav_vector.animate.shift(LEFT * 0.3),

246 run_time=0.2

247)

248 # self.play(

249 # aav_vector.animate.shift(LEFT * 1.5),

250 # run_time=0.8,

251 # rate_func=smooth

252 #)

253 self.wait(0.5)

254

255 # 3. Red cross forms on vector and it turns gray

256 cross_line1 = Line(

257 start=UP * 0.5 + LEFT * 0.5,

258 end=DOWN * 0.5 + RIGHT * 0.5,

259 color=RED,

260 stroke_width=8

261)

262 cross_line2 = Line(

263 start=UP * 0.5 + RIGHT * 0.5,

264 end=DOWN * 0.5 + LEFT * 0.5,

265 color=RED,

266 stroke_width=8

267)

268 red_cross_vector = VGroup(cross_line1, cross_line2)

269 red_cross_vector.move_to(aav_vector.get_center())

270

271 self.play(

272 Create(red_cross_vector),

273 aav_capsid.animate.set_color(GRAY),

274 aav_capsid.animate.set_fill(GRAY, opacity=0.2),

275 *[spike.animate.set_color(GRAY).set_fill(GRAY, opacity=0.2) for spike in spikes],

276 aav_vector.animate.set_stroke(GRAY),

277 rna_strand.animate.set_color(GRAY),

278 run_time=1

279)

280 self.wait(1)

281

282 # 4. CRISPR-Cas9 enters the human

283 self.play(

284 crispr_cas9.animate.move_to(human.get_center()),

285 run_time=2

286)

287 self.wait(0.5)

288

289 # Cross forms on human and human turns gray

290 cross_line3 = Line(

291 start=UP * 1.5 + LEFT * 1.5,

292 end=DOWN * 1.5 + RIGHT * 1.5,

293 color=RED,

294 stroke_width=10

295)

296 cross_line4 = Line(

28

297 start=UP * 1.5 + RIGHT * 1.5,

298 end=DOWN * 1.5 + LEFT * 1.5,

299 color=RED,

300 stroke_width=10

301)

302 red_cross_human = VGroup(cross_line3, cross_line4)

303 red_cross_human.move_to(human.get_center())

304

305 self.play(

306 Create(red_cross_human),

307 human.animate.set_color(GRAY).set_fill(GRAY, opacity=0.3),

308 crispr_cas9.animate.set_color(GRAY).set_opacity(0.3),

309 run_time=1.5

310)

311 self.wait(2)

312

313 class Scene25_PublicOpinionSurvey(Scene):

314 """Public opinion survey on gene therapy"""

315 def construct(self):

316 # Title

317 title = Tex("\\textbf{Public Opinion Survey}", font_size=48, color=YELLOW)

318 title.move_to(UP * 3.2)

319

320 # Create 100 people icons in 10x10 grid

321 people_icons = VGroup()

322 rows, cols = 10, 10

323 spacing = 0.6

324

325 for row in range(rows):

326 for col in range(cols):

327 person = Circle(radius=0.08, color=WHITE, fill_opacity=1, fill_color=WHITE)

328 person[0].move_to(UP * 0.1)

329

330 x_pos = (col - cols / 2) * spacing + spacing / 2

331 y_pos = (rows / 2 - row) * spacing - spacing / 2

332 person.move_to(RIGHT * x_pos + UP * y_pos + DOWN * 0.5)

333

334 people_icons.add(person)

335

336 self.play(

337 Write(title),

338 LaggedStart(*[FadeIn(person) for person in people_icons], lag_ratio=0.01),

339 run_time=1

340)

341 self.wait(1)

342

343 # Group them randomly (predefined random)

344 oppose_indices = (

345 2, 5, 8, 13, 14, 19, 20, 23, 27, 28,

346 30, 42, 45, 47, 50, 51, 52, 60, 63, 68,

347 69, 94, 97, 99, 92

348)

349 oppose_people = [people_icons[i] for i in oppose_indices]

350 support_people = [people_icons[i] for i in range(100) if i not in oppose_indices]

351

352 # Highlight 75% in green (supporting gene therapy)

353 support_label = Tex("\\textbf{75\\% believe in\\\\gene therapy}", font_size=48, color=GREEN)

354 support_label.move_to(LEFT * 5)

355

356 self.play(

357 *[support_people[i].animate.set_color(GREEN) for i in range(75)],

358 Write(support_label),

359 run_time=1

29

360)

361 self.wait(0.5)

362

363 # Show the remaining 25% in red

364 oppose_label = Tex("\\textbf{25\\% uncertain\\\\or opposed}", font_size=48, color=RED)

365 oppose_label.move_to(RIGHT * 5)

366

367 self.play(

368 *[oppose_people[i].animate.set_color(RED) for i in range(25)],

369 Write(oppose_label),

370 run_time=1

371)

372

373 self.wait(3)

374

375 class Scene26_EthicalConcerns(Scene):

376 """Ethical concerns about gene therapy"""

377 def construct(self):

378 # Title

379 title = Tex("{\\bfseries Ethical Concerns}", font_size=56, color=YELLOW)

380 title.move_to(UP * 3)

381

382 # Concern statements

383 concern1_title = Tex("$\\bullet$ \\textbf{��Playing God

}", font_size=36, color=RED)

384 concern1_detail = Tex("Changing nature may cause unexpected dangerous results", font_size=28)

385 concern1 = VGroup(concern1_title, concern1_detail).arrange(DOWN, buff=0.2, aligned_edge=LEFT)

386

387 concern2_title = Tex("$\\bullet$ \\textbf{Fairness and Access}", font_size=36, color=ORANGE)

388 concern2_detail = Tex("Treatments cost millions, risking a permanent genetic divide",

font_size=28),!

389 concern2 = VGroup(concern2_title, concern2_detail).arrange(DOWN, buff=0.2, aligned_edge=LEFT)

390

391 concern3_title = Tex("$\\bullet$ \\textbf{Threat to Human Identity}", font_size=36,

color=PURPLE),!

392 concern3_detail = Tex("Brain-editing errors could cause catastrophic damage", font_size=28)

393 concern3 = VGroup(concern3_title, concern3_detail).arrange(DOWN, buff=0.2, aligned_edge=LEFT)

394

395 concerns = VGroup(concern1, concern2, concern3).arrange(DOWN, buff=0.7, aligned_edge=LEFT)

396 concerns.move_to(DOWN * 0.3)

397

398 # Animate title

399 self.play(Write(title), run_time=1)

400 self.wait(0.5)

401

402 # Animate concerns appearing one by one

403 self.play(FadeIn(concern1, shift=UP * 0.3), run_time=1)

404 self.wait(0.5)

405 self.play(FadeIn(concern2, shift=UP * 0.3), run_time=1)

406 self.wait(0.5)

407 self.play(FadeIn(concern3, shift=UP * 0.3), run_time=1)

408

409 self.wait(3)

410

30

	Research Approach and Methodology
	Key Sources Consulted
	3D Models of Protein Structures
	Video/Animation Clips

	Major Insights and Discovery
	Personal Contribution to the Project
	My Workflow for Contributing to the Video Essay
	Animations Created with Python
	Leadership Role in the Group

	Reflection on Learning
	Understanding of Genetics
	Skills Acquired

